欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2023, Vol. 44 ›› Issue (3): 773-782.doi: 10.12382/bgxb.2021.0757

• • 上一篇    下一篇

淬硬超高强度钢45CrNiMoVA硬车削加工性研究

杜凯(), 焦黎, 颜培(), 余建杭, 王玉彬, 仇天阳, 王西彬   

  1. 北京理工大学 机械与车辆学院,北京 100081
  • 收稿日期:2021-11-10 上线日期:2022-07-04
  • 通讯作者:
    颜培(1984—),男,副教授,硕士生导师。E-mail:
  • 作者简介:

    杜凯(1998—),男,硕士研究生。E-mail:

Study of the Hard Turning Processability of Hardened Ultra-high Strength Steel 45CrNiMoVA

DU Kai(), JIAO Li, YAN Pei(), YU Jianhang, WANG Yubin, QIU Tianyang, WANG Xibin   

  1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
  • Received:2021-11-10 Online:2022-07-04

摘要:

为避免淬硬钢磨削工艺易引入残余拉应力以及大量使用切削液对环境造成严重污染的问题,采用硬车削代替磨削的加工方法。针对淬硬-回火45CrNiMoVA钢进行以车代磨工艺的研究,分析硬车削过程中的切削力、加工表面形貌、残余主应力及显微硬度。结果表明,切削力随切削深度和进给量的增大而增大,切削速度的改变对切削力的影响不大;硬车削后工件表面形貌一致性良好,表面粗糙度Ra值可达0.64 μm;残余主应力随进给量和切削深度的增大而减小,随切削速度的增大先减小后增大;最大残余主应力的方向角随切削速度与切削深度的增大在37°~ 45°范围内保持稳定,随进给量的增大在22°~ 45°范围内先增大后保持稳定;表面显微硬度随切削速度的增大而减小,硬车削后表面显微硬度提高了13%,硬化层深度约200 μm。

关键词: 45CrNiMoVA钢, 硬车削, 切削力, 表面形貌, 残余主应力, 显微硬度

Abstract:

In order to avoid tensile residual stress and heavy use of highly-polluting cutting fluid, in the grinding process of hardened steel, a hard turning process is proposed. The turning process is carried out for the quenched-tempered 45CrNiMoVA steel. The cutting forces during the process are recorded, and the surface morphology, residual principal stress, and microhardness of the machined surfaces are analyzed. The results show that the cutting forces increase with the cutting depth and feed rate. However, the change in cutting speed has little effect on the cutting force. The surface roughness Ra of the workpiece after hard turning can reach 0.64 μm. The consistency of surface morphologies is also satisfying. The residual principal stress decreases with the increase of the feed rate and the cutting depth. By comparison, the residual principal stress first decreases and then increases with the increase of the cutting speed. The direction angle of the maximum residual principal stress changes steadily within the range of 37°~45° with the increase of cutting speed and cutting depth. It first increases and then maintains stable within the range of 22°~45° with the increase of feed. The surface microhardness decreases with the increase of cutting speed, and the depth of hardened layer is about 200 μm.

Key words: 45CrNiMoVA steel, hard turning, cutting force, surface morphology, residual principal stress, microhardness