欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2011, Vol. 32 ›› Issue (11): 1348-1352.

• 论文 • 上一篇    下一篇

基于非下采样Contourlet的熵测度图像融合算法

李骜1, 李一兵1, 刘丹丹2   

  1. (1.哈尔滨工程大学 信息与通信工程学院, 黑龙江 哈尔滨 150001;2.黑龙江科技学院 现代制造加工中心黑龙江 哈尔滨 150001)
  • 收稿日期:2010-11-01 修回日期:2010-11-01 上线日期:2014-05-04
  • 通讯作者: 李骜 E-mail:dargonboy@126.com
  • 作者简介:李骜(1986—),男,博士研究生
  • 基金资助:
    国家自然科学基金资助项目(50904025);船舶工业国防科技预研项目(10J3.16)

An Image Fusion Algorithm with Entropy Measure Based on Non-subsampled Contourlet

LI Ao1, LI Yi-bing1, LIU Dan-dan2   

  1. (1.College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, Heilongjiang,China;2.Modem Manufacturing Engineering Center, Heilongjiang Institute of Science and Technology,Harbin 150001, Heilongjiang, China)
  • Received:2010-11-01 Revised:2010-11-01 Online:2014-05-04
  • Contact: LI Ao E-mail:dargonboy@126.com

摘要: 活性测度是图像融合过程中的重要衡量工具。通过其提取的某种特征信息,来决定哪幅输入图像的特征更为明显。在基于多分辨率分解的融合算法中,常用的活性测度只考虑各层高频子带系数本身,忽略了低频系数所提供的信息。考虑到综合高、低频系数对于活性测度的影响,基于非下采样Contourlet变换良好的平移不变性、多方向等特性,提出了一种在一般方法的基础上,添加由低频系数所得的掩模,再作为活性测度的融合算法。给出了不同活性测度的融合图像以及客观性能评价指标。结果表明,熵掩模测度的融合结果优于其他几种传统测度。

关键词: 信息处理技术, 熵, 活性测度, 图像融合, 非下采样Contourlet, 多分辨率分析

Abstract: The feature information extracted by using activity measure, a very important measure in the process of image fusion, determine a certain input image with more obvious characteristics. In wavelet-based fusion algorithm, the common activity measures consider the coefficients of all high-frequency sub-bands themselves only, and ignore the information provided by low-frequency coefficients. An algorithm based on the general method and added the entropy-masking obtained from the low-frequency coefficients as an active measure is proposed in this paper to comprehensively consider the impact of the high and low frequency coefficients on the activity measures. And, the fused image with different activity measures and objective performance evaluation index are provided also. The results show that the entropy-masking measure is better than several other traditional measures for image fusion.

Key words: information processing, entropy, activity measure, image fusion, non-subsampled Contourlet, analysis of multi-resolution

中图分类号: