欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (6): 240498-.doi: 10.12382/bgxb.2024.0498

• • 上一篇    下一篇

基于Munchausen-PER算法优化的混合动力履带车辆能量管理策略

路潇然1, 邹渊1,*(), 张旭东1, 孙巍1, 孟逸豪1, 张彬2   

  1. 1 北京理工大学 机械与车辆学院, 北京 100081
    2 中国北方车辆研究所, 北京 100072
  • 收稿日期:2024-06-24 上线日期:2025-06-28
  • 通讯作者:
  • 基金资助:
    国家自然科学基金项目(52272410)

Energy Management Strategy Optimized by Munchausen-PER-DDQN for Hybrid Tracked Vehicle

LU Xiaoran1, ZOU Yuan1,*(), ZHANG Xudong1, SUN Wei1, MENG Yihao1, ZHANG Bin2   

  1. 1 School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
    2 China North Vehicle Research Institute, Beijing 100072,China
  • Received:2024-06-24 Online:2025-06-28

摘要:

为优化串联式混合动力履带车辆的燃油经济性及能量管理系统的离线训练用时,提出一种采用蒙乔森(Munchausen)优化算法及优先经验采样(Prioritized Experience Replay,PER)算法的双重深度Q网络(Double-Deep Q_learning Network,DDQN)的能量管理策略。通过包含发动机发电机组、动力电池组及驱动电机的模型对整车功率需求进行解算,根据功率需求,用能量管理控制策略对发动机节气门开度进行最优控制。采用蒙乔森优化算法、PER算法共同作用于离散型DDQN,同时提高网络对高影响数据的选取训练概率及对最优解的专注训练能力,在2种算法共同作用下DDQN能量管理策略的燃油经济性可实现对连续型复杂神经网络的超越,同时具有较大的离线训练用时优势。仿真实验结果表明:与基于PER的双延迟深度确定性策略梯度算法相比,新的能量管理控制策略可使得串联式混动履带车的燃油经济性平均提高4.6%,控制策略训练用时平均优化了35.3%。

关键词: 串联式混动履带车, Munchausen优化算法, 优先经验采样算法, 深度强化学习, 能量管理策略

Abstract:

To optimize the fuel economy of the series hybrid tracked vehicle and reduce the offline training time of neural network,an energy management strategy (EMS) based on double-deep Q_learning network (DDQN) algorithm with Munchausen gradient optimization and prioritized experience replay (Munchausen-PER-DDQN) is proposed.The required power is calculated by a vehicle model which involves the engine-generator set,the battery pack and drive motor,and then the peoposed strategy is used to optimally control the throttle opening of engine based on power demand.The Munchausen gradient optimization algorithm adds log-policy to the reward to ease the learning of sub-optimal actions,and the prioritized experience replay algorithm assigns higher selection possibility to certain experience for those who have more influence on the training of the algorithm,Tthe energy management strategy based on Munchausen-PER-DDQN algorithm shows a better performance of fuel economy and training time of neural network.The simulated result shows that,compared with TD3-PER algorithm,the Munchausen-PER-DDQN algorithm achieves 35.3% improvement in neural network training time and 4.6% improvement in the fuel economy.

Key words: series hybrid tracked vehicle, Munchausen gradient optimization algorithm, Prioritized experience replay algorithm, deep reinforcement learning, energy management strategy

中图分类号: