[45] |
YESIL E, OZTURK C, DODURKA M F, et al. Fuzzy cognitive maps learning using artificial bee colony optimization[C]// Proceedings of the 2013 IEEE International Conference on Fuzzy Systems.Hyderabad, India:IEEE,2013:1-8.
|
[46] |
AHMADI S, FOROUZIDEH N, ALIZADEH S, et al. Learning fuzzy cognitive maps using imperialist competitive algorithm[J]. Neural Computing and Applications, 2015, 26(6):1333-1354.
|
[47] |
PAPAGEORGIOU E I, GROUMPOS P P. A new hybrid method using evolutionary algorithms to train fuzzy cognitive maps[J]. Applied Soft Computing, 2005, 5(4):409-431.
|
[48] |
ZHU Y C, ZHANG W. An integrated framework for learning fuzzy cognitive map using RCGA and NHL algorithm[C]// Proceedings of the 4th International Conference on Wireless Communications,Networking and Mobile Computing.Dalian, China:IEEE,2008:1-5.
|
[49] |
NATARAJAN R, SUBRAMANIAN J, PAPAGEORGIOU E I. Hybrid learning of fuzzy cognitive maps for sugarcane yield classification[J]. Computers and Electronics in Agriculture, 2016,127:147-157.
|
[50] |
LIU X D, ZHANG Y L. Numerical dynamic modeling and data driven control via least square techniques and Hebbian learning algorithm[J]. International Journal of Numerical Analysis & Modeling, 2010, 7(1):66-86.
|
[51] |
马楠, 杨炳儒, 邱正强, 等. 基于测度递进的模糊认知图及其应用[J]. 计算机工程与设计, 2012, 33(5):1958-1962.
|
|
MA N, YANG B R, QIU Z Q, et al. Progressive measure based fuzzy cognitive map and its application[J]. Computer Engineering and Design, 2012, 33(5):1958-1962. (in Chinese)
|
[52] |
REN Z. Learning fuzzy cognitive maps by a hybrid method using nonlinear Hebbian learning and extended great deluge algorithm[C]// Proceedings of the 23rd Midwest Artificial Intelligence and Cognitive Science Conference.Cincinnati,OH, US:Elsevier,2012:159-163.
|
[53] |
STACH W, KURGAN L, PEDRYCZ W. A divide and conquer method for learning large fuzzy cognitive maps[J]. Fuzzy Sets and Systems, 2010, 161(19):2515-2532.
|
[54] |
彭珍, 田立勤, 吴静, 等. 基于大型模糊认知图的复杂系统建模与推理研究[J]. 计算机科学, 2013, 40(6):203-205,210.
|
|
PENG Z, TIAN L Q, WU J, et al. Research on complex system modeling and reasoning based on large fuzzy cognitive map[J]. Computer Science, 2013, 40(6):203-205,210. (in Chinese)
|
[55] |
CHI Y X, LIU J. Reconstructing gene regulatory networks with a memetic-neural hybrid based on fuzzy cognitive maps[J]. Natural Computing, 2019, 18(2):301-312.
|
[56] |
HATWAGNER M F, KOCZY L T. Parameterization and concept optimization of FCM models[C]// Proceedings of the 2015 IEEE International Conference on Fuzzy Systems.Istanbul, Turkey:IEEE,2015:1-8.
|
[57] |
HATWAGNER M F, YESIL E, DODURKA M F, et al. Two-stage learning based fuzzy cognitive maps reduction approach[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(5):2938-2952.
|
[58] |
PAPAGEORGIOU E I, HATWAGNER M F, BURUZS A, et al. A concept reduction approach for fuzzy cognitive map models in decision making and management[J]. Neurocomputing, 2017,232:16-33.
|
[59] |
HOMENDA W, JASTRZEBSKA A, PEDRYCZ W. Time series modeling with fuzzy cognitive maps:simplification strategies:the case of a posteriori removal of nodes and weights[C]// Proceedings of the 13rd IFIP International Conference on Computer Information Systems and Industrial Management.Ho Chi Minh, Vietnam:Springer,2014:409-420.
|
[60] |
邹旭苗. 基于信息理论的大规模模糊认知图学习算法及其应用研究[D]. 西安: 西安电子科技大学, 2018.
|
|
ZOU X M. Information theory based learning algorithms and applications for large-scale fuzzy cognitive map[D]. Xi’an: Xidian University, 2018. (in Chinese)
|
[61] |
CHEN Y, MAZLACK L J, MINAI A A, et al. Inferring causal networks using fuzzy cognitive maps and evolutionary algorithms with application to gene regulatory network reconstruction[J]. Applied Soft Computing, 2015,37:667-679.
|
[62] |
FENG G L, LU W, PEDRYCZ W, et al. The learning of fuzzy cognitive maps with noisy data:a rapid and robust learning method with maximum entropy[J]. IEEE Transactions on Cybernetics, 2019, 51(4):2080-2092.
|
[63] |
LU W, FENG G L, LIU X D, et al. Fast and effective learning for fuzzy cognitive maps:a method based on solving constrained convex optimization problems[J]. IEEE Transactions on Fuzzy Systems, 2020, 28(11):2958-2971.
|
[64] |
YANG Z, LIU J. Learning of fuzzy cognitive maps using a niching-based multi-modal multi-agent genetic algorithm[J]. Applied Soft Computing, 2019,74:356-367.
|
[65] |
沈芳. 面向时间序列的复杂系统重建算法及其应用研究[D]. 西安: 西安电子科技大学, 2021.
|
|
SHEN F. Complex system reconstruction algorithm based on time series and its application[D]. Xi’an: Xidian University, 2021. (in Chinese)
|
[66] |
CARVALHO J P, TOME J B A. Rule based fuzzy cognitive maps-expressing time in qualitative system dynamics[C] // Proceedings of the 10th IEEE International Conference on Fuzzy Systems. Melbourne, Australia:IEEE,2001:280-283.
|
[67] |
SONG H J, MIAO C Y, WUYTS R, et al. An extension to fuzzy cognitive maps for classification and prediction[J]. IEEE Transactions on Fuzzy Systems, 2010, 19(1):116-135.
|
[68] |
吕镇邦, 周利华. 混合模糊认知图[J]. 西安电子科技大学学报, 2007, 34(5):779-783.
|
|
LÜ Z B, ZHOU L H. Hybrid fuzzy cognitive maps[J]. Journal of Xidian University, 2007, 34(5):779-783. (in Chinese)
|
[69] |
SALMERON J L. Modelling grey uncertainty with fuzzy grey cognitive maps[J]. Expert Systems with Applications, 2010, 37(12):7581-7588.
|
[70] |
CHEN J, GAO X D, RONG J. Enhance the uncertainty modeling ability of fuzzy grey cognitive maps by general grey number[J]. IEEE Access, 2020,8:163844-163856.
|
[71] |
IAKOVIDIS D K, PAPAGEORGIOU E I. Intuitionistic fuzzy cognitive maps for medical decision making[J]. IEEE Transactions on Information Technology in Biomedicine, 2010, 15(1):100-107.
|
[72] |
ZHANG Y J, QIN J H, SHI P, et al. High-order intuitionistic fuzzy cognitive map based on evidential reasoning theory[J]. IEEE Transactions on Fuzzy Systems, 2018, 27(1):16-30.
|
[73] |
YAO X X, DING F Q, LUO C. Time series prediction based on high-order intuitionistic fuzzy cognitive maps with variational mode decomposition[J]. Soft Computing, 2022, 26(1):189-201.
|
[74] |
骆祥峰, 高隽. 概率模糊认知图[J]. 中国科学技术大学学报, 2003, 33(1):29-36.
|
|
LUO X F, GAO J. Probabilistic fuzzy cognitive maps[J]. Journal of University of Science and Technology of China, 2003, 33(1):29-36. (in Chinese)
|
[75] |
潘晓勇, 骆祥峰, 刘光复, 等. 基于层次概率模糊认知图的产品拆卸序列研究[J]. 机械工程学报, 2003, 39(4):6-10.
|
|
PAN X Y, LUO X F, LIU G F, et al. Research on disassembly sequence of products based on hierarchical probabilistic fuzzy cognitive map[J]. Chinese Journal of Mechanical Engineering, 2003, 39(4):6-10. (in Chinese)
|
[76] |
骆祥峰, 高隽, 张旭东. 基于信任知识库的概率模糊认知图[J]. 计算机研究与发展, 2003, 40(7):925-933.
|
|
LUO X F, GAO J, ZHANG X D. Probabilistic fuzzy cognitive map based on belief knowledge database[J]. Journal of Computer Research and Development, 2003, 40(7):925-933. (in Chinese)
|
[77] |
SLON G, YASTREBOV A. Remarks on the uncertainty expansion problem in calculations of models of relational fuzzy cognitive maps[C]// Proceedings of the 2017 IEEE International Conference on Fuzzy Systems.Naples, Italy:IEEE,2017:1-8.
|
[78] |
RUAN D, HARDEMAN F, MKRTCHYAN L. Using belief degree-distributed fuzzy cognitive maps in nuclear safety culture assessment[C]// Proceedings of the 2011 Annual Meeting of the North American Fuzzy Information Processing Society.El Paso,TX, US:Elsevier,2011:1-6.
|
[79] |
HAJEK P, PROCHAZKA O. Interval-valued fuzzy cognitive maps for supporting business decisions[C]// Proceedings of the 2016 IEEE International Conference on Fuzzy Systems.Vancouver, Canada:IEEE,2016:531-536.
|
[80] |
NAIR A, RECKIEN D, VAN MAARSEVEEN M F A M. A generalised fuzzy cognitive mapoing approach for modelling complex systems[J]. Applied Soft Computing, 2019,84:105754.
|
[81] |
AMIRKHANI A, NASIRIYAN R H, PAPAGEORGIOU E I. A novel fuzzy inference approach:neuro-fuzzy cognitive map[J]. International Journal of Fuzzy Systems, 2020, 22(3):859-872.
|
[82] |
MIAO Y, LIU Z Q, SIEW C K, et al. Dynamical cognitive network-an extension of fuzzy cognitive map[J]. IEEE Transactions on Fuzzy Systems, 2001, 9(5):760-770.
|
[83] |
CHEN C T, CHIU Y T. A study of dynamic fuzzy cognitive map model with group consensus based on linguistic variables[J]. Technological Forecasting and Social Change, 2021,171:120948.
|
[84] |
LIU B Y, FAN W H, XIAO T Y. Unsupervised dynamic fuzzy cognitive map[J]. Tsinghua Science and Technology, 2015, 20(3):285-292.
|
[85] |
AGUILAR J. A fuzzy cognitive map based on the random neural model[C]// Proceedings of the 14th International Conference on Industrial Engineering and Other Applications of Applied Intelligent Systems.Budapest, Hungary:Springer,2001:333-338.
|
[86] |
AGUILAR J. A dynamic fuzzy-cognitive-map approach based on random neural networks[J]. International Journal of Computational Cognition, 2003, 1(4):91-107.
|
[87] |
KOTTAS T L, BOUTALIS Y S, CHRISTODOULOU M A. Fuzzy cognitive network:a general framework[J]. Intelligent Decision Technologies, 2007, 1(4):183-196.
|
[88] |
WANG J Y, PENG Z, WANG X D, et al. Deep fuzzy cognitive maps for interpretable multivariate time series prediction[J]. IEEE Transactions on Fuzzy Systems, 2020, 29(9):2647-2660.
|
[89] |
CHEN J, GAO X D, RONG J, et al. The dynamic extensions of fuzzy grey cognitive maps[J]. IEEE Access, 2021,9:98665-98678.
|
[90] |
ZHANG N N, YAO X X, LUO C. The prediction of online time series with concept drift based on dynamic intuitionistic fuzzy cognitive map[J]. Intelligent Data Analysis, 2021, 25(4):949-972.
|
[91] |
CAI Y D, MIAO C Y, TAN A H, et al. Creating an immersive game world with evolutionary fuzzy cognitive maps[J]. IEEE Computer Graphics and Applications, 2009, 30(2):58-70.
|
[92] |
PARK K S, KIM S H. Fuzzy cognitive maps considering time relationships[J]. International Journal of Human-Computer Studies, 1995, 42(2):157-168.
|
[93] |
ZHONG H M, MIAO C Y, SHEN Z Q, et al. Temporal fuzzy cognitive maps[C]// Proceedings of the 2008 IEEE International Conference on Fuzzy Systems.Hong Kong, China:IEEE,2008:1833-1833.
|
[94] |
BOURGANI E, STYLIOS C D, MANIS G, et al. Integrated approach for developing timed fuzzy cognitive maps[J]. Advances in Intelligent Systems and Computing, 2015,322:193-204.
|
[95] |
JIANG C B, WANG D, GONG C P, et al. Prediction of key parameters of coal gasification process based on time delay mining fuzzy time cognitive maps[C]// Proceedings of the 2021 IEEE International Conference on Real-Time Computing and Robotics.Xining, China:IEEE,2021:189-193.
|
[96] |
STACH W, KURGAN L, PEDRYCZ W. Higher-order fuzzy cognitive maps[C]// Proceedings of the 2006 Annual Meeting of the North American Fuzzy Information Processing Society. Montreal, Canada:IEEE,2006:166-171.
|
[97] |
薛建儒, 房建武, 吴俊, 等. 多机协同智能发展战略研究[J]. 中国工程科学, 2024, 26(1):101-116.
doi: 10.15302/J-SSCAE-2024.01.013
|
|
XUE J R, FANG J W, WU J, et al. Collaborative multiple autonomous systems[J]. Strategic Study of CAE, 2024, 26(1):101-116. (in Chinese)
doi: 10.15302/J-SSCAE-2024.01.013
|
[98] |
段海滨, 梅宇, 赵彦杰, 等. 2023年无人机热点回眸[J]. 科技导报, 2024, 42(1):217-231.
doi: 10.3981/j.issn.1000-7857.2024.01.014
|
|
DUAN H B, MEI Y, ZHAO Y J, et al. Review of technological hotspots of unmanned aerial vehicle in 2023[J]. Science & Technology Review, 2024, 42(1):217-231. (in Chinese)
|
[99] |
苏波, 江磊, 刘宇飞, 等. 移动机器人跨域跃质关键技术综述[J]. 兵工学报, 2023, 44(9):2556-2567.
doi: 10.12382/bgxb.2023.0414
|
|
SU B, JIANG L, LIU Y F, et al. A review of key technologies for cross-domain and trans-medium of mobile robotics[J]. Acta Armamentarii, 2023, 44(9):2556-2567. (in Chinese)
doi: 10.12382/bgxb.2023.0414
|
[100] |
陈军, 徐嘉, 高晓光. 基于ABFCM模型框架的UCAV自主攻击决策[J]. 系统工程与电子技术, 2017, 39(3):549-556.
|
|
CHEN J, XU J, GAO X G. Autonomous attack decision-making of UCAV based on ABFCM model framework[J]. Systems Engineering and Electronics, 2017, 39(3):549-556. (in Chinese)
doi: 10.3969/j.issn.1001-506X.2017.03.14
|
[101] |
CAVALIERE D, SENATORE S, LOIA V. A multi-perspective aerial monitoring system for scenario detection[C]// Proceedings of the 2018 IEEE Workshop on Environmental,Energy,and Structural Monitoring Systems.Salerno, Italy:IEEE,2018:13-18.
|
[102] |
崔军辉, 魏瑞轩, 张小倩, 等. 无人机搜索和跟踪的模糊认知控制器设计方法[J]. 中南大学学报(自然科学版). 2015, 46(9):3279-3286.
|
|
CUI J H, WEI R X, ZHANG X Q, et al. Design of fuzzy cognitive controllers for unmanned aerial vehicle searching and tracking purposes[J]. Journal of Central South University (Science and Technology), 2015, 46(9):3279-3286. (in Chinese)
|
[103] |
LIU Y Y, ZHANG W, ZHANG Z L, et al. Research on behaviour planning for power substation inspection robot based on fuzzy cognitive map[C]// Proceedings of the 3rd International Conference on Advanced Materials and Intelligent Manufacturing. Guangzhou, China:Elsevier,2022:2390.
|
[104] |
CHEN J, GAO X D, ZHONG L H. Using fuzzy grey cognitive maps to model threat assessment for UAVs[C]// Proceedings of the 14th IEEE International Conference on Control and Automation.Anchorage,AK, US:IEEE,2018:594-599.
|
[105] |
CAVALIERE D, SENATORE S, LOIA V. Proactive UAVs for cognitive contextual awareness[J]. IEEE Systems Journal, 2019, 13(3):3568-3579.
doi: 10.1109/JSYST.2018.2817191
|
[106] |
LEUNG H, CHANDANA S, WEI S. Distributed sensing based on intelligent sensor networks[J]. IEEE Circuits and Systems Magazine, 2008, 8(2):38-52.
|
[107] |
NIKOLAKOPOULOS K, MPELOGIANNI V, GROUMPOS P, et al.Soft computing algorithms for infrastructure monitoring. Preliminary results of PROION project[C]// Proceedings of the 9th International Conference on Remote Sensing and Geoinformation of the Environment.Ayia Napa, Cyprus:SPIE,2023:12786.
|
[108] |
AMIRKHANI A, SHIRZADEH M, KUMBASAR T, et al. A framework for designing cognitive trajectory controllers using genetically evolved interval type-2 fuzzy cognitive maps[J]. International Journal of Intelligent Systems, 2022, 37(1):305-335.
|
[109] |
AMIRKHANI A, SHIRZADEH M, SHOJAEEFARD M H, et al. Controlling wheeled mobile robot considering the effects of uncertainty with neuro-fuzzy cognitive map[J]. ISA Transactions, 2020, 100(1):454-468.
|
[110] |
CAVALIERE D, LOIA V, SENATORE S. A UAV-driven surveillance system to support rescue intervention[C]// Proceedings of the 9th International Conference on Computational Logistics.Vietri sul Mare, Italy:Springer,2018:124-135.
|
[111] |
VASCAK J. Navigation based on fuzzy cognitive maps for needs of ubiquitous robotics[C]// Proceedings of the 17th IEEE World Symposium on Applied Machine Intelligence and Informatics. Herlany, Slovakia:IEEE,2019:123-128.
|
[112] |
VASCAK J, POMSAR L, PAPCUN P, et al. Means of IoT and fuzzy cognitive maps in reactive navigation of ubiquitous robots[J]. Electronics, 2021, 10(7):809-809.
|
[113] |
李军, 陈士超. 无人机蜂群关键技术发展综述[J]. 兵工学报, 2023, 44(9):2533-2545.
doi: 10.12382/bgxb.2023.0514
|
|
LI J, CHEN S C. Overview of key technology and its development of drone swarm[J]. Acta Armamentarii, 2023, 44(9):2533-2545. (in Chinese)
doi: 10.12382/bgxb.2023.0514
|
[114] |
宫远强, 张业鹏, 马万鹏, 等. 无人机蜂群中的群体智能涌现机理[J]. 兵工学报, 2023, 44(9):2661-2671.
doi: 10.12382/bgxb.2022.1181
|
|
GONG Y Q, ZHANG Y P, MA W P, et al. Mechanisms of group intelligence emergence in UAV swarms[J]. Acta Armamentarii, 2023, 44(9):2661-2671. (in Chinese)
doi: 10.12382/bgxb.2022.1181
|
[115] |
CAVALIERE D, SENATORE S. Towards an agent-driven scenario awareness in remote sensing environments[C]// Proceedings of the 8th IEEE Symposium Series on Computational Intelligence.Bangalore, India:IEEE,2018:1982-1989.
|
[116] |
MENDONCA M, CHRUN I R, NEVES J F, et al. A cooperative architecture for swarm robotic based on dynamic fuzzy cognitive maps[J]. Engineering Applications of Artificial Intelligence, 2017,59:122-132.
|
[117] |
GANGANATH N, WALKER M, LEUNG H. Fuzzy cognitive map based situation assessment framework for navigation goal detection[C]// Proceedings of the 2013 IEEE International Conference on Systems,Man,and Cybernetics.Manchester, England:IEEE,2013:1444-1449.
|
[118] |
LUO C, WANG X J. The synchronization of K-valued fuzzy cognitive maps[J]. Fuzzy Sets and Systems, 2024,478:108851.
|
[119] |
MIAO C Y, MIAO Y, ANGELA G, et al. A framework for multi-agent reasoning and coordination[C]// Proceedings of 2020 IASTED International Conference on Artificial Intelligence and Soft Computing.Banff, Canada:ACTA,2020:156-162.
|
[120] |
陈军, 梁晶, 程龙, 等. 基于FCM的多无人机协同攻击决策建模方法[J]. 航空学报, 2022, 43(7):325526.
doi: 10.7527/S1000-6893.2021.25526
|
|
CHEN J, LIANG J, CHENG L, et al. Cooperative attack decision modeling method of multiple UAVs based on FCM[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7):325526. (in Chinese)
doi: 10.7527/S1000-6893.2021.25526
|
[121] |
陈军, 张岳, 陈晓威, 等. 基于模糊灰色认知图的复杂战场智能态势感知建模方法[J]. 兵工学报, 2022, 43(5):1093-1106.
doi: 10.12382/bgxb.2021.0259
|
|
CHEN J, ZHANG Y, CHEN X W, et al. FGCM-based modeling method of intelligent situation awareness in complex[J]. Acta Armamentarii, 2022, 43(5):1093-1106. (in Chinese)
|
[122] |
NACHAZEL T. Fuzzy cognitive maps for decision-making in dynamic environments[J]. Genetic Programming and Evolvable Machines, 2021, 22(1):101-135.
|
[123] |
MENDONCA M, KONDO H S, BOTONI D S L, et al. Semi-unknown environments exploration inspired by swarm robotics using fuzzy cognitive maps[C]// Proceedings of the 2019 IEEE International Conference on Fuzzy Systems.New Orleans,LA, US:IEEE,2019:1-8.
|
[124] |
MENDONCA M, PALACIOS R H C, PAPAGEORGIOU E I, et al. Multi-robot exploration using dynamic fuzzy cognitive maps and ant colony optimization[C]//Proceedings of the 2020 IEEE International Conference on Fuzzy Systems.Electr Network,NY, US:IEEE, 2020:22116.
|
[125] |
ZHAO Z, NIU Y F. Situation-driven fuzzy cognitive maps applied in air-to-ground target attack[C]// Proceedings of the 29th Chinese Control and Decision Conference.Chongqing, China:IEEE,2017:6384-6389.
|
[126] |
王童豪, 彭星光, 胡浩, 等. 海上有人/无人协同系统及其关键技术综述[J]. 兵工学报, 2024, 45(10):3317-3340.
doi: 10.12382/bgxb.2024.0327
|
|
WANG T H, PENG X G, HU H, et al. Maritime manned/unmanned collaborative systems and key technologies:a survey[J]. Acta Armamentarii, 2024, 45(10):3317-3340. (in Chinese)
|
[127] |
牛轶峰, 沈林成, 李杰, 等. 无人-有人机协同控制关键问题[J]. 中国科学:信息科学, 2019, 49(5):538-554.
|
|
NIU Y F, SHEN L C, LI J, et al. Key scientific problems in cooperation control of unmanned-manned aircraft systems[J]. Scientia Sinica Informationis, 2019, 49(5):538-554. (in Chinese)
|
[128] |
陈军, 张新伟, 徐嘉, 等. 有人/无人机混合编队有限干预式协同决策[J]. 航空学报, 2015, 36(11):3652-3665.
doi: 10.7527/S1000-6893.2015.0085
|
|
CHEN J, ZHANG X W, XU J, et al. Human/unmanned-aerial-vehicle team collaborative decision-making with limited intervention[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(11):3652-3665. (in Chinese)
doi: 10.7527/S1000-6893.2015.0085
|
[129] |
CHEN J, QIU X J, RONG J, et al. Design method of organizational structure for MAVs and UAVs heterogeneous team with adjustable autonomy[J]. Journal of Systems Engineering and Electronics, 2018, 29(2):286-295.
doi: 10.21629/JSEE.2018.02.09
|
[130] |
ZHAO Z, WANG C, NIU Y F, et al. Adjustable autonomy for human-UAVs collaborative searching using fuzzy cognitive maps[C]// Proceedings of the 2nd China Symposium on Cognitive Computing and Hybrid Intelligence.Xi’an, China:IEEE,2019:230-234.
|
[131] |
钟赟, 姚佩阳, 张杰勇, 等. 基于HFCM的有人-无人机作战系统交互式协同决策[J]. 系统工程理论与实践, 2021, 41(10):2748-2760.
doi: 10.12011/SETP2020-0283
|
|
ZHONG Y, YAO P Y, ZHANG J Y, et al. Interactive cooperative decision-making of manned-unmanned aerial vehicle combat system based on HFCM[J]. Systems Engineering-Theory & Practice, 2021, 41(10):2748-2760. (in Chinese)
|
[132] |
CHEN J, GAO X G, YU G H. Cooperative effect analysis of manned/unmanned aerial vehicle team based on fuzzy cognition map[C]// Proceedings of the 2011 IEEE International Conference on Signal Processing,Communications and Computing. Xi’an, China:IEEE,2011:1-5.
|
[133] |
XIONG H Y, LI S, LEI T, et al. MAV-UAV collaborative situation assessment based on dynamic intuitionistic fuzzy cognitive maps[C]// Proceedings of the 2021 International Conference on Autonomous Unmanned Systems.Changsha, China:Springer,2022:2755-2764.
|
[134] |
BAEK S H, RYU S J, KIM J H. DMQEA-FCM:an approach for preference-based decision support[C]// Proceedings of the 2016 IEEE International Conference on Fuzzy Systems.Vancouver, Canada:IEEE,2016:1983-1990.
|
[135] |
HAN J H, KIM J H. Human intention reading by fuzzy cognitive map:A human-robot cooperative object carrying task[C]// Proceedings of the 1st International Conference on Robot Intelligence Technology and Applications.Gwangju, Korea:Springer,2013:127-135.
|
[136] |
学喆, 张岳, 陈军. 无人-有人机混合主动式交互决策研究[J]. 航空科学技术, 2022, 33(5):44-52.
|
|
XUE Z, ZHANG Y, CHEN J. Research on UAV-MAV mixed-initiative interactive decision[J]. Aeronautical Science & Technology, 2022, 33(5):44-52. (in Chinese)
|
[137] |
ZHAO Z, NIU Y F, SHEN L C. Adaptive level of autonomy for human-UAVs collaborative surveillance using situated fuzzy cognitive maps[J]. Chinese Journal of Aeronautics, 2020, 33(11):2835-2850.
|
[138] |
SOVATZIDI G, VASILAKAKIS M D, IAKOVIDIS D K. Fuzzy cognitive maps for interpretable image-based classification[C]// Proceedings of the 2022 IEEE International Conference on Fuzzy Systems.Padua, Italy:IEEE,2022:1-6.
|
[139] |
APOSTOLOPOULOS L D, GROUMPOS P P. Fuzzy cognitive maps:their role in explainable artificial intelligence[J]. Applied Sciences-Basel, 2023, 13(6):3412.
|
[140] |
MAHMOUDZADEH S, YAZDANI A, KALANTARI Y, et al. Holistic review of UAV-centric situational awareness:applications,limitations,and algorithmic challenges[J]. Robotics, 2024, 13(8):117.
|
[141] |
郝肇铁, 郭斌, 赵凯星, 等. 从规则驱动到群智涌现:多机器人空地协同研究综述[J]. 自动化学报, 2024, 50(10):1877-1905.
|
|
HAO Z T, GUO B, ZHAO K X, et al. From rule-driven to collective intelligence emergence:a review of research on multi-robot air-ground collaboration[J]. Acta Automatica Sinica, 2024, 50(10):1877-1905. (in Chinese)
|
[142] |
TANG J, DUAN H B, LAO S Y. Swarm intelligence algorithms for multiple unmanned aerial vehicles collaboration:a comprehensive review[J]. Artificial Intelligence Review, 2023, 56(5):4295-4327.
|
[143] |
张栋, 王孟阳, 唐硕. 面向任务的无人机集群自主决策技术[J]. 指挥与控制学报, 2022, 8(4):365-377.
|
|
ZHANG D, WANG M Y, TANG S. Autonomous decision-making technology for task-oriented UAV swarm[J]. Journal of Command and Control, 2022, 8(4):365-377. (in Chinese)
|
[144] |
向锦武, 董希旺, 丁文锐, 等. 复杂环境下无人集群系统自主协同关键技术[J]. 航空学报, 2022, 43(10):527570.
doi: 10.7527/S1000-6893.2022.27570
|
|
XIANG J W, DONG X W, DING W R, et al. Key technologies for autonomous cooperation of unmanned swarm systems in complex environments[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10):527570. (in Chinese)
doi: 10.7527/S1000-6893.2022.27570
|
[145] |
喻国明, 杨雅, 修利超, 等. 认知负荷超载场景下人机协同与信任的有效性评测模式——以飞行员应急条件下的认知场景为例[J]. 学术探索, 2023, 1(10):84-94.
|
|
YU G M, YANG Y, XIU L C, et al. Effectiveness evaluation and model construction of pilot’s human-computer collaborative decision-making in emergency scenarios[J]. Academic Exploration, 2023, 1(10):84-94. (in Chinese)
|
[146] |
叶坤武, 牛超, 刘泽华, 等. 智能空战中的人机关系[C]// 第十一届中国指挥控制大会论文集.北京, 中国: 中国指挥与控制学会,2023:41-46.
|
|
YE K W, NIU C, LIU Z H, et al. Human-machine relationship in intelligent air combat[C]// Proceedings of the 11th Chinese Conference of Command and Control. Beijing,China: CICC,2023:41-46. (in Chinese)
|
[147] |
CASTRO A, SILVA F, SANTOS V. Trends of human-robot collaboration in industry contexts:handover,learning,and metrics[J]. Sensors, 2021, 21(12):4113.
|
[1] |
曾照洋, 彭文胜, 李云凯, 等. 智能无人机集群可靠性技术内涵、发展及挑战[J]. 兵工学报, 2025, 46(3):240322.
doi: 10.12382/bgxb.2024.0322
|
|
ZENG Z Y, PENG W S, LI Y K, et al. Technical connotation,development and challenges of intelligent drone swarm reliability[J]. Acta Armamentarii, 2025, 46(3):240322.
|
[2] |
蒲志强, 易建强, 刘振, 等. 知识和数据协同驱动的群体智能决策方法研究综述[J]. 自动化学报, 2022, 48(3):627-643.
|
|
PU Z Q, YI J Q, LIU Z, et al. Knowledge-based and data-driven integrating methodologies for collective intelligence decision making:a survey[J]. Acta Automatica Sinica, 2022, 48(3):627-643. (in Chinese)
|
[3] |
朱迪, 张博闻, 程雅琪, 等. 知识赋能的新一代信息系统研究现状、发展与挑战[J]. 软件学报, 2023, 34(10):4439-4462.
|
|
ZHU D, ZHANG B W, CHENG Y Q, et al. Survey on knowledge enabled new generation information systems[J]. Journal of Software, 2023, 34(10):4439-4462. (in Chinese)
|
[4] |
张钹, 朱军, 苏航. 迈向第三代人工智能[J]. 中国科学:信息科学, 2020, 50(9):1281-1302.
|
|
ZHANG B, ZHU J, SU H. Toward the third generation of artificial intelligence[J]. SCIENTIA SINICA Informationis, 2020, 50(9):1281-1302. (in Chinese)
|
[5] |
马乐乐, 刘向杰, 高福荣. 基于知识迁移的数据驱动迭代学习模型预测控制[J]. 中国科学:信息科学, 2024, 54(7):1752-1774.
|
|
MA L L, LIU X J, GAO F R. Data-driven iterative learning model predictive control based on knowledge transfer[J]. SCIENTIA SINICA Informationis, 2024, 54(7):1752-1774. (in Chinese)
|
[6] |
黄旭, 柳嘉润, 张远, 等. 知识与数据混合驱动的高速飞行控制方法综述[J]. 宇航学报, 2023, 44(8):1113-1126.
|
|
HUANG X, LIU J R, ZHANG Y, et al. Review on knowledge-based and data-driven cooperating control methods of high-speed vehicle[J]. Journal of Astronautics, 2023, 44(8):1113-1126. (in Chinese)
|
[7] |
李洋军, 黄琦龙, 杨力, 等. 数据和知识双驱动的空中集群目标作战意图识别[J]. 兵工学报, 2025, 46(2):240113.
doi: 10.12382/bgxb.2024.0113
|
|
LI Y J, HUANG Q L, YANG L, et al. Combat intention recognition of air cluster targets driven by data and knowledge[J]. Acta Armamentarii, 2025, 46(2):240113. (in Chinese)
doi: 10.12382/bgxb.2024.0113
|
[8] |
KOSKO B. Fuzzy cognitive maps[J]. International Journal of Man-Machine Studies, 1986, 24(1):65-75.
|
[9] |
PAPAGEORGIOU E I, SALMERON J L. A review of fuzzy cognitive maps research during the last decade[J]. IEEE Transactions on Fuzzy Systems, 2012, 21(1):66-79.
|
[10] |
张燕丽. 基于模糊认知图的动态系统的建模与控制[D]. 大连: 大连理工大学, 2012.
|
|
ZHANG Y L. The modeling and control of dynamic system based on fuzzy cognitive maps[D]. Dalian: Dalian University of Technology, 2012. (in Chinese)
|
[11] |
李慧, 陈红倩, 马丽仪, 等. 模糊认知图的算法改进与应用综述[J]. 南京大学学报(自然科学版), 2016, 52(4):746-761.
|
|
LI H, CHEN H Q, MA L Y, et al. A review of algorithm improvement and application of fuzzy cognitive map[J]. Journal of Nanjing University (Natural Science), 2016, 52(4):746-761. (in Chinese)
|
[12] |
ROTSHTEIN A, YOSEF A, NESKORODEVA T, et al. Fuzzy cognitive map and mean square method in empirical modeling:application in economics[J]. Expert Systems with Applications, 2024,247:123176.
|
[13] |
KARATZINIS G D, POSTOLIKAS N A, BOUTALIS Y S, et al. Fuzzy cognitive networks in diverse applications using hybrid representative structures[J]. International Journal of Fuzzy Systems, 2023, 25(7):2534-2554.
|
[14] |
CHEN J, GAO X D, RONG J, et al. A situation awareness assessment method based on fuzzy cognitive maps[J]. Journal of Systems Engineering and Electronics, 2022, 33(5):1108-1122. (in Chinese)
|
[15] |
APOSTOLOPOULOS I D, PAPANDRIANOS N I, PAPATHANA-SIOU N D, et al. Fuzzy cognitive map applications in medicine over the last two decades:a review study[J]. Bioengineering-Basel, 2024, 11(2):139-139.
|
[16] |
FONSECA K, ESPITIA E, BREUER L, et al. Using fuzzy cognitive maps to promote nature-based solutions for water quality improvement in developing-country communities[J]. Journal of Cleaner Production, 2022,377:134246.
|
[17] |
FELIX G, NAPOLES G, FALCON R, et al. A review on methods and software for fuzzy cognitive maps[J]. Artificial Intelligence Review, 2019, 52(3):1707-1737.
doi: 10.1007/s10462-017-9575-1
|
[18] |
POCZETA K, KUBUS L, YASTREBOV A. Analysis of an evolutionary algorithm for complex fuzzy cognitive map learning based on graph theory metrics and output concepts[J]. Biosystems, 2019,179:39-47.
|
[19] |
刘晓倩, 张英俊, 秦家虎, 等. 模糊认知图学习算法及应用综述[J]. 自动化学报, 2024, 50(3):450-474.
|
|
LIU X Q, ZHANG Y J, QIN J H, et al. A review of fuzzy cognitive map learning algorithms and applications[J]. Acta Automatica Sinica, 2024, 50(3):450-474. (in Chinese)
|
[20] |
SCHUERKAMP R, GIABBANELLI P J. Extensions of fuzzy cognitive maps:a systematic review[J]. ACM Computing Surveys, 2023, 56(2):53.
|
[21] |
SINGH R, NISHAD D K, KHALID S, et al. A review of the application of fuzzy mathematical algorithm-based approach in autonomous vehicles and drones[J]. International Journal of Intelligent Robotics and Applications, 2025,9:344-364.
|
[22] |
BUENO S, SALMERON J L. Benchmarking main activation functions in fuzzy cognitive maps[J]. Expert Systems with Applications, 2009, 36(3):5221-5229.
|
[23] |
STYLIOS C D, GROUMPOS P P. A soft computing approach for modelling the supervisor of manufacturing systems[J]. Journal of Intelligent and Robotic Systems, 1999, 26(3):389-403.
|
[24] |
HAGIWARA M. Extended fuzzy cognitive maps[C]// Proceedings of IEEE International Conference on Fuzzy Systems.San Diego,CA, US:IEEE,1992:795-801.
|
[25] |
GIABBANELLI P J, GALGOCZY M C, NGUYEN D M, et al. Mapping the complexity of suicide by combining participatory modeling and network science[C]// Proceedings of the 13rd IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. Hague,the Netherlands: ACM,2021:339-342.
|
[26] |
GUPTA V K, GIABBANELLI P J, TAWFIK A A. An online environment to compare students’ and expert solutions to ill-structured problems[C]// Proceedings of the 5th International Conference on Learning and Collaboration Technologies.Las Vegas,NV, US:Springer,2018:286-307.
|
[27] |
SARMIENTO I, COCKCROFT A, DION A, et al. Combining conceptual frameworks on maternal health in indigenous communities-fuzzy cognitive mapping using participant and operator-independent weighting[J]. Field Methods, 2022, 34(3):223-239.
|
[28] |
STACH W, KURGAN L, PEDRYCZ W, et al. Genetic learning of fuzzy cognitive maps[J]. Fuzzy Sets and Systems, 2005, 153(3):371-401.
|
[29] |
HILAL A M, ALSOLAI H, ALWESABI F N, et al. Fuzzy cognitive maps with bird swarm intelligence optimization-based remote sensing image classification[J]. Computational Intelligence and Neuroscience, 2022, 2022(1):4063354.
|
[30] |
PAPAGEORGIOU E I. A new methodology for decisions in medical informatics using fuzzy cognitive maps based on fuzzy rule-extraction techniques[J]. Applied Soft Computing, 2011, 11(1):500-513.
|
[31] |
LIU J, CHI Y X, ZHU C. A dynamic multiagent genetic algorithm for gene regulatory network reconstruction based on fuzzy cognitive maps[J]. IEEE Transactions on Fuzzy Systems, 2015, 24(2):419-431.
|
[32] |
Al DUHAYYIM M, MOHAMED H G, ALZAHRANI J S, et al. Modeling of fuzzy cognitive maps with a metaheuristics-based rainfall prediction system[J]. Sustainability, 2023, 15(1):25.
|
[33] |
迟亚雄. 模糊认知图智能学习算法与应用研究[D]. 西安: 西安电子科技大学, 2017.
|
|
CHI Y X. Research on intelligent learning algorithmand application of fuzzy cognitive maps[D]. Xi’an: Xidian University, 2017. (in Chinese)
|
[34] |
吴凯. 复杂系统智能建模算法及其应用研究[D]. 西安: 西安电子科技大学, 2020.
|
|
WU K. Intelligent modeling algorithm for complex system and its application[D]. Xi’an: Xidian University, 2020. (in Chinese)
|
[35] |
DICKERSON J A, KOSKO B. Virtual worlds as fuzzy cognitive maps[J]. Presence:Teleoperators & Virtual Environments, 1994, 3(2):173-189.
|
[36] |
HUERGA A V. A balanced differential learning algorithm in fuzzy cognitive maps[C]// Proceedings of the 16th International Workshop on Qualitative Reasoning.Sitges, Spain:Elsevier,2002:1-7.
|
[37] |
PAPAGEORGIOU E I, STYLISO C D, GROUMPOS P P. Active Hebbian learning algorithm to train fuzzy cognitive maps[J]. International Journal of Approximate Reasoning, 2004, 37(3):219-249.
|
[38] |
PAPAKOSTAS G A, POLYDOROS A S, KOULOURIOTIS D E, et al. Training fuzzy cognitive maps by using Hebbian learning algorithms:a comparative study[C]// Proceedings of the 2011 IEEE International Conference on Fuzzy Systems.Taipei, China:IEEE,2011:851-858.
|
[39] |
STACH W, KURGAN L, PEDRYCZ W. Data-driven nonlinear Hebbian learning method for fuzzy cognitive maps[C]// Proceedings of the 2008 IEEE International Conference on Fuzzy Systems.Hong Kong, China:IEEE,2008:1975-1981.
|
[40] |
KOULOURIOTIS D E, DIAKOULAKIS I E, EMRIIS D M. Learning fuzzy cognitive maps using evolution strategies:a novel schema for modeling and simulating high-level behavior[C]// Proceedings of the 2001 Congress on Evolutionary Computation.Seoul, South Korea: IEEE,2001:364-371.
|
[41] |
PARSOPOULOS K E, PAPAGEORGIOU E I, GROUMPOS P P, et al. A first study of fuzzy cognitive maps learning using particle swarm optimization[C]// Proceedings of the 2003 Congress on Evolutionary Computation.Canberra, Australia:IEEE,2003:1440-1447.
|
[42] |
PAPAGEORGIOU E I, GROUMPOS P P. Optimization of fuzzy cognitive map model in clinical radiotherapy through differential evolution algorithm[J]. International Journal of Biomedical Soft Computing and Human Sciences, 2003, 9(2):25-31.
|
[43] |
STACH W, KURGAN L, PEDRYCZ W. Parallel learning of large fuzzy cognitive maps[C]// Proceedings of the 2007 IEEE International Joint Conference on Neural Networks.Orlando,FL, US:IEEE,2007:1584-1589.
|
[44] |
YESIL E, URBAS L. Big bang-big crunch learning method for fuzzy cognitive maps[J]. International Journal of Computer and Information Engineering, 2010, 4(11):1756-1765.
|