欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (7): 240651-.doi: 10.12382/bgxb.2024.0651

• • 上一篇    下一篇

基于Hyperband-贝叶斯优化-LSTM网络的高旋尾控修正弹修正能力研究

周杰, 王良明*(), 傅健, 王彦钦, 郭首邑   

  1. 南京理工大学 能源与动力工程学院, 江苏 南京 210094
  • 收稿日期:2024-07-30 上线日期:2025-08-12
  • 通讯作者:
  • 基金资助:
    国家自然科学基金项目(61903241); 中央高校基本科研业务费专项资金资助项目(2024302003)

Research on the Correction Capability of High-spin and Tail-controlled Correction Projectile Based on HBBO-LSTM Network

ZHOU Jie, WANG Liangming*(), FU Jian, WANG Yanqin, GUO Shouyu   

  1. School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
  • Received:2024-07-30 Online:2025-08-12

摘要:

为快速准确地解算出高旋尾控修正弹的修正指令,针对其能力预测问题,提出一种基于Hyperband算法-贝叶斯优化-长短期记忆网络(Hyperband algorithm-Bayesian optimization-Long Short-Term Memory network,HBBO-LSTM)的修正能力预测模型。建立高旋尾控修正弹的7自由度弹道模型,并使用龙格-库塔法进行数值仿真,生成大量样本数据;通过对数据集的分析,提出一种基于拉马努金近似公式的预处理方式,对原始数据集进行预处理,获得空间分布均匀的样本数据。构建HBBO-LSTM网络预测模型,通过训练得到模型的最佳结构参数。提出一种融合带重启机制的余弦退火衰减和指数衰减的学习率下降策略,保证训练过程的快速性和稳定性。将所述模型与长短期记忆网络模型、门控循环单元网络模型和反向传播网络模型在同一测试集下进行仿真实验,并与4自由度修正质点弹道方程数值积分法进行实验对比。研究结果表明,HBBO-LSTM网络模型的综合均方误差为0.17m2,综合平均绝对误差为0.33m,预测精度优于其他模型;且解算时间和预测精度均优于数值积分法,具有较高的可行性和参考价值。

关键词: 修正能力, 弹道修正弹, 尾控弹, 长短期记忆网络, Hyperband算法, 贝叶斯优化

Abstract:

To rapidly and accurately calculate the correction command of high-spin and tail-controlled correction projectiles,a correction capability prediction model based on hyperband algorithm-Bayesian optimization-long short-term memory (HBBO-LSTM) network is proposed for the prediction problem of correction capability.A 7DOF ballistic model of the high-spin and tail-controlled correction projectile is established.It is numerically simulated using the Runge-Kutta method to generate a large amount of sample data.By analyzing the dataset,a preprocessing method based on Ramanujan’s approximation formula is proposed to preprocess the original dataset for obtaining the sample data with uniform spatial distribution.A HBBO-LSTM network prediction model is constructed,and the optimal structural parameters are obtained through training.A learning rate decay strategy combining cosine annealing with restart mechanism and exponential decay is proposed to ensure the speed and stability of training process.The proposed model is compared with the long short-term memory network,gated recurrent unit network and back propagation network models on the same test set through simulation.It is also evaluated against the numerical integration method for 4DOF correction projectile ballistic equation.The results show that the prediction accuracy of the HBBO-LSTM network model is superior to those of other models with an overall mean squared error of 0.17m2 and an overall mean absolute error of 0.33m.Additionally,the HBBO-LSTM model outperforms the numerical integration method in both computation time and prediction accuracy.This demonstrates that the HBBO-LSTM network model has high feasibility and reference value.

Key words: correction capability, ballistic correction projectile, tail-controlled projectile, long short-term memory network, hyperband algorithm, Bayesian optimization

中图分类号: