欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (3): 240062-.doi: 10.12382/bgxb.2024.0062

• • 上一篇    下一篇

基于多层特征嵌入的单目标跟踪算法

才华1,*(), 周鸿策1, 付强2, 赵义武2   

  1. 1 长春理工大学 电子信息工程学院, 吉林 长春 130022
    2 长春理工大学 空间光电技术研究所, 吉林 长春 130022
  • 收稿日期:2024-01-18 上线日期:2025-03-26
  • 通讯作者:
  • 基金资助:
    国家自然科学基金重大项目(61890963); 国家自然基金联合基金项目(U2341226); 吉林省人才专项项目(20240602015RC); 2023年度西安市飞行器光学成像与测量技术重点实验室开放基金项目(2023-013)

Single Object Tracking Algorithm Based on Multilayer Feature Embedding

CAI Hua1,*(), ZHOU Hongce1, FU Qiang2, ZHAO Yiwu2   

  1. 1 School of Electronic Information Engineering, Changchun University of Science and Technology, Changchun 130022, Jilin, China
    2 Institute of Space Ophotoelectronics Technology, Changchun University of Science and Technology, Changchun 130022, Jilin, China
  • Received:2024-01-18 Online:2025-03-26

摘要:

针对现有视觉目标跟踪方法仅使用初始帧的目标单一外观特征,导致当背景复杂或外观发生剧烈变化时跟踪失效的问题,提出一种基于多层特征嵌入的单目标跟踪算法。增强目标的外观区分度,使用稀疏内嵌注意力机制编码器,嵌入具有高实例区分度的外观特征;采用类间特征聚合编码器嵌入目标的类别信息,在外观发生变化时保持类内的紧凑性;同时将预测的历史帧跟踪框坐标转化为目标运动轨迹特征嵌入,为算法提供高置信度的时间上下文特征。研究结果表明:所提算法在OTB100基准测试中成功率和准确率分别达到71.4%和92.6%,在GOT-10K、LaSOT、TrackingNet共3个大规模公开数据上取得了鲁棒的效果,成功率分别达到64.9%、72.0%和78.7%;基于多层特征嵌入的单目标跟踪算法有效地克服了现有算法的局限,具有较好的准确性和鲁棒性。

关键词: 目标跟踪, 稀疏内嵌注意力机制编码器, 类间特征聚合编码器, 运动特征嵌入

Abstract:

The existing visual object tracking methods often face the challenge of tracking failure when dealing with complex backgrounds or drastic appearance changes due to relying solely on the initial frame’s single appearance feature.To address this issue,a single object tracking algorithm based on multilayer feature embedding is proposed.To enhance the discriminability of the target’s appearance,a sparse embedded attention encoder is employed to embed the appearance features with high instance distinctiveness.Additionally,an category feature aggregation encoder is utilized to embed the target’s category information,maintaining the compactness within the class when the appearance changes occur.Simultaneously,the predicted historical frame tracking box coordinates are transformed into the embedded target motion trajectory features,providing the tracking algorithm with high-confidence temporal context features.Experimental results demonstrate that the proposed algorithm achieves a success rate of 71.4% and an accuracy of 92.6% in the OTB100 benchmark test.Moreover,it exhibits robust performance on three large-scale public datasets,namely GOT-10K,LaSOT,and TrackingNet,with success rates reaching 64.9%,72.0%,and 78.7%,respectively.The proposed algorithm effectively overcomes the limitations of the existing tracking algorithms,and has the enhanced tracking accuracy and robustness.

Key words: object tracking, sparse embedded attention encoder, category feature aggregation encoder, motion feature embedding

中图分类号: