[1] REID D. An algorithm for tracking multiple targets[J]. IEEE Transaction on Automatics Control, 1979, 24(6):1202-1211. [2] DAUM F. Multitarget-multisensor tracking: principles and techniques [book review][J]. IEEE Aerospace and Electronic Systems Magazine, 1996, 11(2):41-53. [3] MAHLER R . Multitarget Bayes filtering via first-order multitarget moments[J]. IEEE Transactions on Aerospace & Electronic Systems, 2004, 39(4):1152-1178. [4] HU Q, JI H B, ZHANG Y Q. A standard PHD filter for joint tracking and classification of maneuvering extended targets using random matrix[J]. Signal Processing, 2018, 144: 352-363. [5] LEONARD M R, ZOUBIR A M. Multi-target tracking in distributed sensor networks using particle PHD filters[J]. Signal Processing, 2019, 159: 130-146. [6] LIU Z, JI L N, YANG F B, et al. Cubature information Gaussian mixture probability hypothesis density approach for multi extended target tracking[J]. IEEE Access, 2019, 7: 103678-103692. [7] FENG P M, WANG W W, DLAY S, et al. Social force model-based MCMC-OCSVM particle PHD filter for multiple human tracking[J]. IEEE Transactions on Multimedia, 2016, 19(4): 725-739. [8] KIM H, GRANSTRM K, GAO L, et al. Joint CKF-PHD filter and map fusion for 5G multi-cell SLAM[C]∥Proceedings of ICC 2020—2020 IEEE International Conference on Communications. Dublin, Ireland: IEEE, 2020: 1-6. [9] 姜琦, 王锐, 周超, 等. 基于代数图论的修正贝叶斯群目标航迹起始算法[J]. 电子与信息学报, 2021, 43(3):531-538. JIANG Q, WANG R, ZHOU C, et al.Modified Bayesian group target track initiation algorithm based on algebraic graph theory[J]. Journal of Electronics and Information Technology, 2021, 43(3): 531-538.(in Chinese) [10] PANTA K, CLARK D E, VO B N. Data association and track management for the gaussian mixture probability hypothesis density filter[J]. IEEE Transactions on Aerospace & Electronic Systems IEEE, 2009, 45(3):1003-1016. [11] VO B N, SINGH S, DOUCET A. Sequential Monte Carlo methods for multitarget filtering with random finite sets[J]. IEEE Transactions on Aerospace and electronic systems, 2005, 41(4): 1224-1245. [12] LI X R,BAR-SHALOM Y. Tracking in clutter with nearest neighbor filters: analysis and performance[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(3): 995-1010. [13] LI X R. Tracking in clutter with strongest neighbor measurements. I. theoretical analysis[J]. IEEE Transactions on Automatic Control, 1998, 43(11): 1560-1578. [14] BAR-SHALOM Y, KIRUBARAJAN T, LIN X. Probabilistic data association techniques for target tracking with applications to sonar, radar and EO sensors[J]. IEEE Aerospace and Electronic Systems Magazine, 2005, 20(8): 37-56. [15] YAZDIAN-DEHKORDI M, AZIMIFAR Z, MASNADI-SHIRAZI M A. Penalized Gaussian mixture probability hypothesis density filter for multiple target tracking[J]. Signal Processing, 2012, 92(5):1230-1242. [16] YAZDIAN-DEHKORDI M, AZIMIFAR Z. Refined GM-PHD tracker for tracking targets in possible subsequent missed detections[J]. Signal Processing, 2015, 116: 112-126. [17] VO B T, VO B N, CANTONI A. Analytic implementations of the cardinalized probability hypothesis density filter[J]. IEEE transactions on signal processing, 2007, 55(7): 3553-3567. [18] 杨峰, 王永齐, 梁彦,等. 基于概率假设密度滤波方法的多目标跟踪技术综述[J]. 自动化学报, 2013, 39(11):1944-1956. YANG F, WANG Y Q, LIANG Y, et al. Overview of multi-target tracking technology based on probability hypothesis density filtering method[J]. Acta Automatica Sinica, 2013, 39(11):1944-1956. (in Chinese) [19] SONG T L, LEE D G. A probabilistic nearest neighbor filter algorithm for m validated measurements[J]. IEEE Transactions on Signal Processing, 2006, 54(7): 2797-2802. [20] MAHLER R. PHD filters of higher order in target number[J]. IEEE Transactions on Aerospace and Electronic systems, 2007, 43(4): 1523-1543.
|