
兵工学报 ›› 2025, Vol. 46 ›› Issue (10): 250478-.doi: 10.12382/bgxb.2025.0478
收稿日期:2025-06-10
上线日期:2025-11-05
通讯作者:
ZHAO Shengwei1, ZHOU Gang1,*(
), SUN Hao2, CHEN Baihan3, LI Ming1
Received:2025-06-10
Online:2025-11-05
摘要:
为研究含能材料受激发后的能量释放特性并确保试验的安全性,设计了1kg TNT当量双层非对称圆柱形爆炸防护装置。通过结构设计、LS-DYNA有限元软件仿真分析和1kg TNT全当量爆轰动态响应试验,对比理论预测、实验数据及仿真结果,评估了该爆炸防护装置的安全性。仿真分析与试验结果显示:1kg TNT当量双层非对称圆柱形爆炸防护装置结构设计合理,安全系数具有较大裕度;1kg TNT全当量爆轰动态响应试验中,实测典型位置外壁面应变对应应力低于防护装置壳体材料屈服强度,实测典型位置内壁面反射超压峰值在经验公式计算值范围内,防护装置抗爆强度满足试验要求。该设计、分析和实验方法可为类似爆炸防护装置的设计与验证提供有益参考。
赵生伟, 周刚, 孙浩, 陈柏翰, 李明. 1kg TNT当量双层非对称爆炸防护装置结构设计与实验[J]. 兵工学报, 2025, 46(10): 250478-.
ZHAO Shengwei, ZHOU Gang, SUN Hao, CHEN Baihan, LI Ming. Structural Design and Experiment of 1kg TNT Equivalent Double-layer Asymmetric Explosion Protection Device[J]. Acta Armamentarii, 2025, 46(10): 250478-.
| 材料属性 | Q345R | S30408 |
|---|---|---|
| 弹性模量/GPa | 209 | 170 |
| 抗拉强度σb/MPa | 500 | 520 |
| 屈服强度σs /MPa | 325 | 230 |
| 许用应力/MPa | 185 | 153 |
| 伸长率/% | 25 | 45 |
表1 材料参数
Table 1 Material parameters
| 材料属性 | Q345R | S30408 |
|---|---|---|
| 弹性模量/GPa | 209 | 170 |
| 抗拉强度σb/MPa | 500 | 520 |
| 屈服强度σs /MPa | 325 | 230 |
| 许用应力/MPa | 185 | 153 |
| 伸长率/% | 25 | 45 |
| 公式 | H.L. Brode | Josef Henrgeh | 国防工 程设计 规定 | W. E. Baker 公式 | Almashov 公式 |
|---|---|---|---|---|---|
| 入射超压/MPa | 0.826 | 0.80 | 1.054 | 0.799 | 0.887 |
表2 公式计算入射超压值
Table 2 The calculated value of incident overpressure
| 公式 | H.L. Brode | Josef Henrgeh | 国防工 程设计 规定 | W. E. Baker 公式 | Almashov 公式 |
|---|---|---|---|---|---|
| 入射超压/MPa | 0.826 | 0.80 | 1.054 | 0.799 | 0.887 |
| *MAT_PLASTIC_KINEMATIC | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 容器 | R0 | E | PR | SIGY | ETAN | ||||||||
| 7600 | 20700 | 0.3 | 265 | 880 | |||||||||
| *MAT_HIGH_EXPLOSIVE_BURN | |||||||||||||
| TNT | R0 | D | PCJ | BETA | |||||||||
| 1630 | 6.929 | 2100 | 0.0 | ||||||||||
| *EOS_JWL | |||||||||||||
| A | B | R1 | R2 | OMEG | E0 | V0 | |||||||
| 37100 | 3230 | 4.15 | 0.95 | 0.3 | 7000 | 1.0 | |||||||
| *MAT_NULL | |||||||||||||
| 空气 | R0 | PC | MU | YM | PR | ||||||||
| 1.2929 | 0.0 | 0.0 | 0.0 | 0.0 | |||||||||
| *EOS_LINEAR_POLYNOMIAL | |||||||||||||
| C0 | C1 | C2 | C3 | C4 | E0 | V0 | |||||||
| 0 | 0 | 0 | 0 | 0.4 | 2.5 | 1.0 | |||||||
表3 材料模型及状态方程关键参数
Table 3 Material model and key parameters of state equation
| *MAT_PLASTIC_KINEMATIC | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 容器 | R0 | E | PR | SIGY | ETAN | ||||||||
| 7600 | 20700 | 0.3 | 265 | 880 | |||||||||
| *MAT_HIGH_EXPLOSIVE_BURN | |||||||||||||
| TNT | R0 | D | PCJ | BETA | |||||||||
| 1630 | 6.929 | 2100 | 0.0 | ||||||||||
| *EOS_JWL | |||||||||||||
| A | B | R1 | R2 | OMEG | E0 | V0 | |||||||
| 37100 | 3230 | 4.15 | 0.95 | 0.3 | 7000 | 1.0 | |||||||
| *MAT_NULL | |||||||||||||
| 空气 | R0 | PC | MU | YM | PR | ||||||||
| 1.2929 | 0.0 | 0.0 | 0.0 | 0.0 | |||||||||
| *EOS_LINEAR_POLYNOMIAL | |||||||||||||
| C0 | C1 | C2 | C3 | C4 | E0 | V0 | |||||||
| 0 | 0 | 0 | 0 | 0.4 | 2.5 | 1.0 | |||||||
图2 不同时刻防护装置内部爆炸流场压力、壳体内部和外部应力等值云图
Fig.2 Pressure equivalent cloud map of explosive flow field and stresses fields of inner and outer shells of explosion protection device at different moments
| 网格尺寸/mm | 入射超压/MPa | 反射超压/MPa |
|---|---|---|
| 16 | 1.23 | 4.77 |
| 12 | 1.26 | 4.95 |
| 10 | 1.31 | 5 |
| 8 | 1.32 | 5.3 |
表4 不同空气网格尺寸下入射超压和反射超压的仿真结果
Table 4 The simulated results of incident and reflection overpressures under different air grid dimensions
| 网格尺寸/mm | 入射超压/MPa | 反射超压/MPa |
|---|---|---|
| 16 | 1.23 | 4.77 |
| 12 | 1.26 | 4.95 |
| 10 | 1.31 | 5 |
| 8 | 1.32 | 5.3 |
| 应变片 | 应变 位置 | 应变最大值/ με | 对应应力/ MPa | 许用应力/ MPa |
|---|---|---|---|---|
| A01 | ε1 | 399.75 | 83.55 | 185 |
| A02 | ε2 | 459.31 | 96.00 | 185 |
| A03 | ε3 | 384.23 | 80.30 | 185 |
| A04 | ε4 | 343.01 | 71.69 | 185 |
| A05 | ε5 | 425.16 | 88.86 | 185 |
| A06 | ε6 | 313.93 | 65.61 | 185 |
| A07 | ε7 | 409.22 | 85.53 | 185 |
| A08 | ε8 | 358.34 | 74.89 | 185 |
| A09 | ε9 | 503.07 | 105.14 | 185 |
| A10 | ε10 | 492.02 | 102.83 | 185 |
| A11 | ε11 | 496.90 | 103.85 | 185 |
| A12 | ε12 | 346.47 | 72.41 | 185 |
| A13 | ε13 | 335.68 | 70.16 | 185 |
| A14 | ε14 | 392.27 | 81.98 | 185 |
| A15 | ε15 | 336.39 | 70.31 | 185 |
| A16 | ε16 | 300.98 | 62.91 | 185 |
| B01 | ε17 | 351.98 | 73.56 | 185 |
| B02 | ε18 | 790.81 | 165.28 | 185 |
| B03 | ε19 | 269.08 | 56.24 | 185 |
| B04 | ε20 | 593.23 | 123.98 | 185 |
| B05 | ε21 | 335.90 | 70.20 | 185 |
| B06 | ε22 | 666.43 | 139.28 | 185 |
| B07 | ε23 | 136.15 | 28.46 | 185 |
| B08 | ε24 | 109.96 | 22.98 | 185 |
| 最大值 | 790.81 | 165.28 |
表5 应变最大值及其对应应力
Table 5 Maximum strain and corresponding stress
| 应变片 | 应变 位置 | 应变最大值/ με | 对应应力/ MPa | 许用应力/ MPa |
|---|---|---|---|---|
| A01 | ε1 | 399.75 | 83.55 | 185 |
| A02 | ε2 | 459.31 | 96.00 | 185 |
| A03 | ε3 | 384.23 | 80.30 | 185 |
| A04 | ε4 | 343.01 | 71.69 | 185 |
| A05 | ε5 | 425.16 | 88.86 | 185 |
| A06 | ε6 | 313.93 | 65.61 | 185 |
| A07 | ε7 | 409.22 | 85.53 | 185 |
| A08 | ε8 | 358.34 | 74.89 | 185 |
| A09 | ε9 | 503.07 | 105.14 | 185 |
| A10 | ε10 | 492.02 | 102.83 | 185 |
| A11 | ε11 | 496.90 | 103.85 | 185 |
| A12 | ε12 | 346.47 | 72.41 | 185 |
| A13 | ε13 | 335.68 | 70.16 | 185 |
| A14 | ε14 | 392.27 | 81.98 | 185 |
| A15 | ε15 | 336.39 | 70.31 | 185 |
| A16 | ε16 | 300.98 | 62.91 | 185 |
| B01 | ε17 | 351.98 | 73.56 | 185 |
| B02 | ε18 | 790.81 | 165.28 | 185 |
| B03 | ε19 | 269.08 | 56.24 | 185 |
| B04 | ε20 | 593.23 | 123.98 | 185 |
| B05 | ε21 | 335.90 | 70.20 | 185 |
| B06 | ε22 | 666.43 | 139.28 | 185 |
| B07 | ε23 | 136.15 | 28.46 | 185 |
| B08 | ε24 | 109.96 | 22.98 | 185 |
| 最大值 | 790.81 | 165.28 |
| 公式 | (1) | (2) | (3) | (4) | (5) |
|---|---|---|---|---|---|
| 入射超压/MPa | 0.737 | 0.722 | 1.009 | 0.717 | 0.793 |
| 刚壁正反射超压/MPa | 3.744 | 3.646 | 5.590 | 3.613 | 4.115 |
表6 入射超压及反射超压公式计算值
Table 6 The calculated values of incident and reflective overpressures
| 公式 | (1) | (2) | (3) | (4) | (5) |
|---|---|---|---|---|---|
| 入射超压/MPa | 0.737 | 0.722 | 1.009 | 0.717 | 0.793 |
| 刚壁正反射超压/MPa | 3.744 | 3.646 | 5.590 | 3.613 | 4.115 |
| 冲击波超压/MPa | 正压作用时间/ms | ||||||
|---|---|---|---|---|---|---|---|
| 公式计算值 | 仿真值 | 实测值 | 公式 计算值 | 仿真值 | 实测值 | ||
| P1 | P2 | P1 | P2 | ||||
| 3.613~5.590 | 5.379 | 4.179 | 2.764 | 0.237 | 0.6 | 0.90 | 0.74 |
表7 反射超压、正压作用时间计算值与仿真值和实测值比较
Table 7 Comparison of measured, simulated and calculated results of shockwave reflective overpressure and specific impulse
| 冲击波超压/MPa | 正压作用时间/ms | ||||||
|---|---|---|---|---|---|---|---|
| 公式计算值 | 仿真值 | 实测值 | 公式 计算值 | 仿真值 | 实测值 | ||
| P1 | P2 | P1 | P2 | ||||
| 3.613~5.590 | 5.379 | 4.179 | 2.764 | 0.237 | 0.6 | 0.90 | 0.74 |
| [1] |
胡葵, 柴亚博, 罗宁, 等. 2kg TNT当量圆柱形爆炸容器结构设计与安全校核[J]. 工程爆破, 2024, 30(4): 102-110.
|
|
|
|
| [2] |
|
| [3] |
刘欣, 顾文彬, 蔡星会, 等. 圆柱形爆炸容器的内壁爆炸载荷[J]. 爆炸与冲击, 2022, 42(2): 19-30.
|
|
|
|
| [4] |
|
| [5] |
徐景林, 陈立, 朱俊光, 等. 圆柱形爆炸容器抗爆特性的试验研究[J]. 防护工程, 2023, 45(4): 14-19.
|
|
|
|
| [6] |
徐景林, 顾文彬, 刘建青, 等. 圆柱形爆炸容器内爆炸载荷的分布规律[J]. 振动与冲击, 2020, 39(18): 276-282.
|
|
|
|
| [7] |
徐景林, 顾文彬, 刘建青, 等. 圆柱形爆炸容器的应变增长现象[J]. 兵工学报, 2018, 39(S1): 96-101.
|
|
|
|
| [8] |
|
| [9] |
宫婕, 汪泉, 李志敏, 等. 柱形爆炸容器内爆炸冲击波的传播规律研究[J]. 爆破, 2017, 34(4): 17-21,51.
|
|
|
|
| [10] |
薛冰, 马宏昊, 沈兆武, 等. 爆炸容器内小药量实验动态标定压力传感器[J]. 爆炸与冲击, 2015, 35(3): 437-441.
|
|
|
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
钟方平, 陈春毅, 林俊德, 等. 双层圆柱形爆炸容器弹塑性结构响应的实验研究[J]. 兵工学报, 2000, 21(3): 268-271.
|
|
|
|
| [17] |
崔云霄, 陈鹏万, 王雷元, 等. 多层钢筒结构在内部强爆炸作用下变形行为的数值模拟[J]. 北京理工大学学报自然版, 2015, 35(S2): 14-17.
|
|
|
|
| [18] |
王定贤, 胡昊, 王万鹏, 等. 动力系数法在爆炸容器设计中的应用[J]. 四川兵工学报, 2011, 32(4): 24-26.
|
|
|
|
| [19] |
熊琛, 钟方平, 张小良, 等. 某立式双层圆柱形爆炸容器动态响应测试和振动特性分析[C]// 第八届全国冲击动力学学术讨论会会议论文集. 中国西安: 西北核技术研究所,2007:210-213.
|
|
|
|
| [20] |
李兴珠, 李元, 郭子如. 1kg TNT当量爆炸容器抗爆设计计算与验证[J]. 煤矿爆破, 2021, 39(2): 4-8.
|
|
|
|
| [21] |
李兴珠, 郭子如, 汪泉. 5kg TNT当量球形爆炸容器抗爆结构设计[J]. 煤矿爆破, 2017(1): 4-8.
|
|
|
|
| [22] |
|
| [23] |
曹胜光, 舒挺, 陈冬群, 等. 5kg TNT当量爆炸容器的研制[J]. 压力容器, 2004(4): 33-36.
|
|
|
|
| [24] |
文潮, 金志浩, 关锦清, 等. 国内首台1kg TNT当量复合板爆炸容器的设计[J]. 压力容器, 2002(7): 12-14,37.
|
|
|
|
| [25] |
胡八一, 柏劲松, 刘大敏, 等. 爆炸容器的工程设计方法及其应用[J]. 压力容器, 2000(2): 39-41.
|
|
|
|
| [26] |
|
| [27] |
|
| [28] |
中华人民共和国国家市场监督管理总局, 国家标准化管理委员会. 压力容器:GB 150.1-150.4—2024. 北京: 中国标准出版社, 2024.
|
| [29] |
周听清. 爆炸动力学及其应用[M]. 合肥: 中国科学技术大学出版社, 2001.
|
|
|
|
| [30] |
张守中. 爆炸基本原理[M]. 北京: 国防工业出版社, 1988.
|
|
|
|
| [31] |
孙业斌. 爆炸作用与装药设计[M]. 北京: 国防工业出版社, 1987.
|
|
|
|
| [32] |
李翼祺, 马素贞. 爆炸力学[M]. 北京: 科学出版社, 1992.
|
|
|
|
| [33] |
赵士达. 爆炸容器[J]. 爆炸与冲击, 1989, 9(1): 85-96.
|
|
|
|
| [34] |
徐之纶. 弹性力学[M]. 北京: 高等教育出版社, 2016.
|
|
|
|
| [35] |
张国伟. 终点效应及靶场试验[M]. 北京: 北京理工大学出版社, 2009.
|
|
|
|
| [36] |
黄正祥. 终点效应[M]. 北京: 科学出版社, 2014.
|
|
|
| [1] | 左铭朔, 徐豫新, 李永鹏, 李旭东, 郭德龙, 杨祥. 内爆载荷下民机用定向泄爆容器结构的动态响应[J]. 兵工学报, 2024, 45(7): 2383-2392. |
| [2] | 张勇, 肖正明, 段浩, 伍星, 卢敏, 王浩. 水下中远场爆炸冲击波作用下航行体表面动态响应分析[J]. 兵工学报, 2024, 45(7): 2341-2350. |
| [3] | 陈泰然, 耿昊, 王典, 邱思聪, 孙旭光. 水陆两栖车辆水上运动特性实时仿真系统研究[J]. 兵工学报, 2024, 45(5): 1402-1415. |
| [4] | 周猛, 梁民族, 林玉亮. 冲击波-破片联合载荷对固支方板的耦合作用机理[J]. 兵工学报, 2023, 44(S1): 99-106. |
| [5] | 韩佳彤, 王昕, 张磊, 李振, 王鹏飞, 赵振宇, 卢天健. 泡沫子弹冲击下预制圆孔Q235钢板的动态响应与破坏机理[J]. 兵工学报, 2023, 44(12): 3654-3666. |
| [6] | 赵猛, 戴开达, 向召, 姜涛, 赵晓松, 徐豫新. 近爆荷载下聚氯乙烯泡沫夹芯板的动力学模型研究[J]. 兵工学报, 2023, 44(12): 3884-3896. |
| [7] | 闫银坡, 于福杰, 陈原. 开架式水下机器人水动力系数计算与动力学建模[J]. 兵工学报, 2021, 42(9): 1972-1986. |
| [8] | 宁子轩, 王琳, 程兴旺, 程焕武, 刘安晋, 徐雪峰, 周哲, 张斌斌. 分离式霍普金森压杆加载下不同组织Ti-6321钛合金的动态响应行为[J]. 兵工学报, 2021, 42(4): 862-870. |
| [9] | 鄢阿敏, 皮爱国, 王健, 黄风雷, 王晓锋. 基于薄层单元模型的弹体与引信系统螺纹连接参数确定方法[J]. 兵工学报, 2021, 42(4): 743-754. |
| [10] | 郑佳佳, 阚君武, 张广, 王炅, 欧阳青. 火炮反后坐多级独立式磁流变缓冲器可控性分析[J]. 兵工学报, 2019, 40(4): 708-717. |
| [11] | 耿少波, 葛培杰, 李洪, 徐鹏. 爆炸荷载结构等效静载动力系数研究[J]. 兵工学报, 2019, 40(10): 2088-2095. |
| [12] | 张晓颖, 李胜杰, 李志强. 爆炸载荷作用下夹层玻璃动态响应的数值模拟[J]. 兵工学报, 2018, 39(7): 1379-1388. |
| [13] | 田振国, 孟晓永, 安雪云, 白象忠. 电磁轨道发射状态下的复合导轨动态响应研究[J]. 兵工学报, 2017, 38(4): 651-657. |
| [14] | 周晓和, 马大为, 朱忠领, 廖选平, 鞠晓杰. 面基层间不同结合状态下发射场坪动态响应研究[J]. 兵工学报, 2015, 36(12): 2269-2277. |
| [15] | 姜文征, 刘颖. 低冲量质量块冲击下固支泡沫夹芯梁的动力响应[J]. 兵工学报, 2014, 35(8): 1230-1235. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备11010802024360号 京ICP备05059581号-4