欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (10): 250468-.doi: 10.12382/bgxb.2025.0468

• • 上一篇    下一篇

纳米多孔材料液体系统对近场爆炸载荷削弱效应

朱炜1, 姚文进1,*(), 黄广炎2, 李文彬1, 王晓鸣1   

  1. 1 南京理工大学 机械工程学院, 江苏 南京 210094
    2 北京理工大学 爆炸科学与安全防护全国重点实验室, 北京 100081
  • 收稿日期:2025-06-07 上线日期:2025-11-05
  • 通讯作者:
  • 基金资助:
    国家自然科学基金项目(12102198); 中央高校基本科研业务费专项资金资助项目(30924010907); 中央高校基本科研业务费专项资金资助项目(30925020207)

Mitigation Effects of Nanoporous Material Liquid System on losed-field Blast Loading

ZHU Wei1, YAO Wenjin1,*(), HUANG Guangyan2, LI Wenbin1, WANG Xiaoming1   

  1. 1 School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
    2 State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, China
  • Received:2025-06-07 Online:2025-11-05

摘要:

为探究纳米多孔材料液体系统(Nanoporous Material Liquid Systems,NMLS)在提升纤维围栏抗爆性能中的应用价值,针对纳米多孔二氧化硅水悬浮液的削爆效应开展了实验与数值模拟研究。通过内爆炸实验对比了空腔-围栏、水填充腔体-围栏以及NMLS填充腔体-围栏三种环形复合结构的抗爆性能,结果显示三者纤维断裂情况差异较小,水和NMLS均未表现出明显的削爆效果。建立了与实验工况对应的数值模型,采用经动态冲击实验校验的压实状态方程描述NMLS的力学行为,模拟结果表明:水和NMLS反而显著增强了围栏内壁上的爆炸载荷,压力峰值分别达到了无液体层时的1.7倍和1.9倍;NMLS引起更加严重的载荷增强是因为冲击波传入NMLS时在追赶加载作用下经历了更高幅度的初始压力增长。进一步开展了更宽参数范围的数值分析,发现:水层始终表现出爆炸增强效应,而NMLS对爆炸载荷的影响随着爆距增大、装药量减小或液体层增厚,由增强效应逐渐转化为削弱效应,这源于NMLS的吸能能力与爆炸载荷实现了匹配,导致冲击波穿过NMLS层后压力发生更大幅度的衰减。

关键词: 爆炸防护, 纳米多孔材料液体系统, 吸能作用, 有限元数值模拟

Abstract:

To explore the application value of nanoporous material liquid systems (NMLS) in enhancing the blast resistance of fiber shells, experimental and numerical studies were conducted on the blast mitigation effects of nano-porous silica water suspensions. Internal explosion experiments were carried out to compare the blast resistance performance of three different hollow cylindrical composite structures: empty chamber-shell, water-filled chamber-shell, and NMLS-filled chamber-shell. The results showed minimal differences in fiber breakage among these three structures, indicating that neither water nor NMLS exhibited a significant blast mitigation effect. Numerical models matching the experimental conditions were established, and the mechanical behavior of NMLS was described using a compaction equation of state validated by dynamic impact experiments. The simulation results revealed that both water and NMLS significantly increased the internal blast loading on the shell, with peak pressures reaching 1.7 and 1.9 times that of the baseline (no liquid layer), respectively. The more severe loading enhancement caused by NMLS was attributed to the higher initial pressure rise experienced by the shock wave propagating through the NMLS layer under the catch-up effect. Further numerical analyses over a broader range of parameters showed that water consistently exhibits a blast-enhancing effect, while the effect of NMLS transitions from enhancement to mitigation as the standoff distance increases, the charge mass decreases, or the liquid layer thickness increases. This transition was due to a better match between the energy absorption capacity of NMLS and the blast loading, leading to greater attenuation of the shock wave pressure after passing through the NMLS layer.

Key words: blast mitigation, nano-porous material liquid systems, energy absorption, finite element simulation