[65] |
TANG W Q, YANG R J, LI J M, et al. Core-shell particle of aluminum-copper perfluorooctanoate configurations and its ignition and combustion properties[J]. Combustion and Flame, 2022, 245:112270.
|
[66] |
TANG W, YANG R J, ZENG T, et al. Positive effects of organic fluoride on reduction of slag accumulation in static testing of solid rocket motors of different diameters[J]. Acta Astronautica, 2022, 194:277-285.
|
[67] |
KE X, GUO S F F, GUO B W, et al. Superhydrophobic fluorine-containing protective coating to endow Al nanoparticles with long-term storage stability and self-activation reaction capability[J]. Advanced Materials Interfaces, 2019, 6(19): 1901025-1901036.
|
[68] |
ZHANG L C, WANG S, SU X, et al. Preparation and characterization of core-shell Al@PFHP with improving the combustion and ignition properties of aluminum powder[J]. Particuology, 2022, 77:62-70.
|
[69] |
COHEN O, MICHAELS D, YAVOR Y. Agglomeration in composite propellants containing different nano-aluminum powders[J]. Propellants, Explosives, Pyrotechnics, 2022, 47(9):e202100320.
|
[70] |
JIAO Y K, LI S G, LI G P, et al. Effect of fluoropolymer content on thermal and combustion performance of direct writing high-solid nanothermite composite[J]. RSC Advances, 2022, 12(9):5612-5618.
doi: 10.1039/d1ra08970f
pmid: 35425591
|
[71] |
WANG H X, REN H, YAN T Y, et al. A latent highly activity energetic fuel: thermal stability and interfacial reaction kinetics of selected fluoropolymer encapsulated sub-micron sized Al particles[J]. Scientific Reports, 2021, 11(1): 738-751.
doi: 10.1038/s41598-020-80865-2
pmid: 33436998
|
[72] |
ZHENG D W, HUANG T W, XU B, et al. 3D Printing of n-Al/polytetrafluoroethylene-based energy composites with excellent combustion stability[J]. Advanced Engineering Materials, 2021, 23(5): 2001252-2001259.
|
[73] |
PANG W Q, LI Y, DELUCA L T, et al. Effect of metal nanopowders on the performance of solid rocket propellants:a review[J]. Nanomaterials, 2021, 11(10):2749-2760.
|
[74] |
AO W, LIU P J, LIU H, et al. Tuning the agglomeration and combustion characteristics of aluminized propellants via a new functionalized fluoropolymer[J]. Chemical Engineering Journal, 2020, 382:122987-122997.
|
[1] |
高峰, 张泽. 含装药缺陷的固体火箭发动机性能评估综述[J]. 兵工学报, 2021, 42(8):1789-1802.
|
|
GAO F, ZHANG Z. Review on performance evaluation of solid rocket motors with charge defects[J]. Acta Armamentarii, 2021, 42(8):1789-1802. (in Chinese)
doi: 10.3969/j.issn.1000-1093.2021.08.024
|
[2] |
MAHDAVI M, FARROKHPOUR H, TAHRIRI M. Investigation of simultaneous formation of nano-sized CuO and ZnO on the thermal decomposition of ammonium perchlorate for composite solid propellants[J]. Journal of Thermal Analysis & Calorimetry, 2018, 132(2):879-893.
|
[3] |
ARISAWA H, BRILL T B. Flash pyrolysis of hydroxyl-terminated polybutadiene(HTPB) Ⅱ: implications of the kinetics to combustion of organic polymers[J]. Combustion and Flame, 1996, 106(1/2):144-154.
|
[4] |
JAIN S, GUPTA G, KSHIRSAGAR D R, et al. Burning rate and other characteristics of strontium titanate(SrTiO3) supplemented AP/HTPB/Al composite propellants-ScienceDirect[J]. Defence Technology, 2019, 15(3):313-318.
|
[5] |
PANG W Q, LI Y, DELUCA L T, et al. Effect of metal nanopowders on the performance of solid rocket propellants:a review[J]. Nanomaterials, 2021, 11(10):2749-2774.
|
[6] |
AO W, FAN Z M, LIU L, et al. Agglomeration and combustion characteristics of solid composite propellants containing aluminum-based alloys[J]. Combustion and Flame, 2020, 220(10):288-297.
|
[7] |
VELLAISAMY U, BISWAS S. Effect of metal additives on neutralization and characteristics of AP/HTPB solid propellants[J]. Combustion and Flame, 2020, 221(11):326-337.
|
[8] |
TU C Y, CHEN X, LI Y K, et al. Experimental study of Al agglomeration on solid propellant burning surface and condensed combustion products[J]. Defence Technology, 2023, 26: 111-122.
|
[9] |
YUAN J F, LIU J Z, ZHOU Y N, et al. Aluminum agglomeration of AP/HTPB composite propellant[J]. Acta Astronautica, 2019, 156(3): 14-22.
|
[10] |
WANG D Q, CAO X F, LIU J, et al. TF-Al/TiC highly reactive composite particle for application potential in solid propellants[J]. Chemical Engineering Journal, 2021, 425(12):130674.
|
[11] |
EMELYANOV V N, TETERINA I V, VOLKOV K N. Dynamics and combustion of single aluminium agglomerate in solid propellant environment-ScienceDirect[J]. Acta Astronautica, 2020, 176(11):682-694.
|
[12] |
HAN L, LI J W, WANG Y B, et al. Study on combustion oscillation characteristics of micron aluminum particles[J]. Powder Technology, 2021, 394(12):782-790.
|
[13] |
ISERT S, LANE C D, GUNDUZ I E, et al. Tailoring burning rates using reactive wires in composite solid rocket propellants[J]. Proceedings of the Combustion Institute, 2017, 36(2):2283-2290.
|
[14] |
JIANG Z, LI S F, LI K, et al. Laser ignition and combustion properties of composite propellant containing nanometal powders[J]. AIAA Journal, 2006, 44(7): 1463-1467.
|
[15] |
ARMSTRONG R W, BASCHUNG B, BOOTH D W, et al. Enhanced propellant combustion with nanoparticles[J]. Nano Letters, 2003, 3(2):253-255.
|
[16] |
ISERT S, GROVEN L J, LUCHT R P, et al. The effect of encapsulated nanosized catalysts on the combustion of composite solid propellants[J]. Combustion and Flame, 2015, 162(5):1821-1828.
|
[17] |
CHENG Z P, CHU X Z, YIN J Z, et al. Formation of composite fuels by coating aluminum powder with a cobalt nanocatalyst:enhanced heat release and catalytic performance[J]. Chemical Engineering Journal, 2020, 385:123859.
|
[18] |
KIM D W, KIM K T, LEE D U, et al. Synergetic enhancement in the reactivity and stability of surface-oxide-free fine Al particles covered with a polytetrafluoroethylene nanolayer[J]. Scientific Reports, 2020, 10(1):14560.
doi: 10.1038/s41598-020-71162-z
pmid: 32883998
|
[19] |
YE M Q, ZHANG S T, LIU S S, et al. Preparation and characterization of pyrotechnics binder-coated nano-aluminum composite particles[J]. Journal of Energetic Materials, 2016, 35(3):300-313.
|
[20] |
XIAO L Q, PANG W Q, QIN Z, et al. Cluster analysis of Al agglomeration in solid propellant combustion[J]. Combustion and Flame, 2019, 203:386-396.
doi: 10.1016/j.combustflame.2018.12.032
|
[21] |
XIAO L Q, FAN X Z, LI J Z, et al. Effect of Al content and particle size on the combustion of HMX-CMDB propellant[J]. Combustion and Flame, 2020, 214: 80-89.
|
[22] |
TEJASVI K, VENKATESHWARA RAO V, PYDISETTY Y, et al. Studies on aluminum agglomeration and combustion in catalyzed composite propellants[J]. Combustion, Explosion, and Shock Waves, 2021, 57(2):203-214.
|
[23] |
WANG W M, LI H, YANG Y J, et al. Enhanced thermal decomposition, laser ignition and combustion properties of NC/Al/RDX composite fibers fabricated by electrospinning[J]. Cellulose, 2021, 28(10):6089-6105.
|
[24] |
MUTLU M, KANG J H, RAZA S, et al. Thermoplasmonic ignition of metal nanoparticles[J]. Nano Letters, 2018, 18(3):1699-1706.
doi: 10.1021/acs.nanolett.7b04739
pmid: 29356548
|
[25] |
WANG F Y, WU Z G, SHANGGUAN X H, et al. Preparation of mono-dispersed, high energy release, core/shell structure Al nanopowders and their application in HTPB propellant as combustion enhancers[J]. Scientific Reports, 2017, 7:5228.
doi: 10.1038/s41598-017-05599-0
pmid: 28701741
|
[26] |
XIAO L, ZHAO L J, KE X, et al. Energetic metastable Al/CuO/PVDF/RDX microspheres with enhanced combustion performance-ScienceDirect[J]. Chemical Engineering Science, 2020, 231:116302.
|
[27] |
BALBUDHE K, ROY A, CHAKRAVARTHY S R. Computer modelling of nano-aluminium agglomeration during the combustion of composite solid propellants[J]. Proceedings of the Combustion Institute, 2015, 35(2):2471-2478.
|
[28] |
LIU J P, ZHANG H R, YAN Q L. Anti-sintering behavior and combustion process of aluminum nano particles coated with PTFE:a molecular dynamics study[J]. Defence Technology, 2023, 24: 46-57.
|
[29] |
LIU Y Z, CHEN J, LIU J G, et al. Core-shell structure mediated microstructure and mechanical properties of high entropy alloy CoCrFeNi/Al composites[J]. Vacuum, 2021, 192: 110454.
|
[30] |
BOCANEGRA P E, CHAUVEAU C, GÖKALP I. Experimental studies on the burning of coated and uncoated micro and nano-sized aluminium particles[J]. Aerospace Science and Technology, 2007, 11(1):33-38.
|
[31] |
王慧心, 任慧, 闫涛, 等. 聚乙烯醇原位包覆铝粉结构表征及活性铝含量测定[J]. 兵工学报, 2019, 40(7):1373-1380.
doi: 10.3969/j.issn.1000-1093.2019.07.006
|
|
WANG H X, REN H, YAN T, et al. Micro-structure and active aluminum content of aluminum powder in situ coated by polyvinyl Alcohol[J]. Acta Armamentarii, 2019, 40(7): 1373-1380. (in Chinese)
doi: 10.3969/j.issn.1000-1093.2019.07.006
|
[32] |
闫涛, 任慧, 马爱娥, 等. 氟橡胶包覆层对纳米铝粉性能的影响研究[J]. 兵工学报, 2019, 40(8):1611-1617.
doi: 10.3969/j.issn.1000-1093.2019.08.008
|
|
YAN T, REN H, MA A E, et al. Effect of fluorine rubber coating on properties of nano-aluminum powder[J]. Acta Armamentarii, 2019, 40(8): 1611-1617. (in Chinese)
doi: 10.3969/j.issn.1000-1093.2019.08.008
|
[33] |
GAO F, XU C, ZHANG H P, et al. Core-shell structured al-matrix composite with enhanced mechanical properties[J]. Materials Science & Engineering A, 2016, 657:64-70.
|
[34] |
HUANG S D, PAN M, DENG S L, et al. Modified micro-emulsion synthesis of highly dispersed Al/PVDF composites with enhanced combustion properties[J]. Advanced Engineering Materials, 2019, 21(5): 1801330.
|
[35] |
KHELIFA F, ERSHOV S, DRUART M E, et al. A multilayer coating with optimized properties for corrosion protection of Al[J]. Journal of Materials Chemistry A, 2015, 3(31): 15977-15985.
|
[75] |
UHLENHAKE K E, YEHIA O R, NOEL A, et al. On the use of fluorine-containing nano-aluminum composite particles to tailor composite solid rocket propellants[J]. Propellants, Explosives, Pyrotechnics, 2022, 47(7):e202100370.
|
[76] |
WANG H Y, REHWOLDT M, KLINE D J, et al. Comparison study of the ignition and combustion characteristics of directly-written Al/PVDF, Al/Viton and Al/THV composites[J]. Combustion and Flame, 2019, 201:181-186.
|
[36] |
NIE H, PISHARATH S, HNG H H. Combustion of fluoropolymer coated Al and Al-Mg alloy powders[J]. Combustion and Flame, 2020, 220:394-406.
|
[37] |
WANG J, ZHANG L, MAO Y F, et al. An effective way to enhance energy output and combustion characteristics of Al/PTFE[J]. Combustion and Flame, 2020, 214:419-425.
|
[38] |
ZHANG M Y, BIESOLD G M, CHOI W, et al. Recent advances in polymers and polymer composites for food packaging[J]. Materials Today, 2022, 53:134-161.
|
[39] |
GOMANN I, HALBACH M, SCHOLZ-BTTCHER B M. Car and truck tire wear particles in complex environmental samples-a quantitative comparison with “traditional” microplastic polymer mass loads-ScienceDirect[J]. Science of the Total Environment, 2021, 773: 145667.
|
[40] |
GLEISSNER C, LANDSIEDEL J, BECHTOLD T, et al. Surface activation of high performance polymer fibers: a review[J]. Polymer Reviews, 2022, 62(4):757-788.
|
[41] |
HSISSOU R, SEGHIRI R, BENZEKRI Z, et al. Polymer composite materials:a comprehensive review[J]. Composite Structures, 2021, 262: 113640.
|
[42] |
WANG J, QIAO Z Q, YANG Y T, et al. Core-shell Al-polytetrafluoroethylene(PTFE) configurations to enhance reaction kinetics and energy performance for nanoenergetic materials[J]. Chemistry-A European Journal, 2016, 22(1) 279-284.
|
[43] |
WANG J, ZENG C C, ZHAN C H, et al. Tuning the reactivity and combustion characteristics of PTFE/Al through carbon nanotubes and grapheme[J]. Thermochimica Acta, 2019, 676: 276-281.
|
[44] |
ZHAO B B, SUN S X, LUO Y J, et al. Fabrication of polytetrafluoroethylene coated micron aluminium with enhanced oxidation[J]. Materials, 2020, 13(15): 3384.
|
[45] |
SIPPEL T R, SON S F, GROVEN L J. Aluminum agglomeration reduction in a composite propellant using tailored Al/PTFE particles[J]. Combustion and Flame, 2014, 161(1): 311-321.
|
[46] |
XIAO F, YANG R J, LI J M. Preparation and characterization of mechanically activated aluminum/polytetrafluoroethylene composites and their reaction properties in high temperature water steam[J]. Journal of Alloys and Compounds, 2018, 761:24-30.
|
[47] |
XIAO F, LIANG T X. Preparation of hierarchical core-shell Al-PTFE@TA and Al-PTFE@TA-Fe architecture for improving the combustion and ignition properties of aluminum[J]. Surface and Coatings Technology, 2021, 412: 127073.
|
[48] |
MAO Y F, HE Q Q, WANG J, et al. Tuning energy output of PTFE/Al composite materials through gradient structure[J]. Defence Technology, 2022.DOI: 10.1016/j.dt.2022.05.015.
|
[49] |
WU Z Y, LIU J X, ZHANG S, et al. Enhanced thermal- and impact-initiated reactions of PTFE/Al energetic materials through ultrasonic-assisted core-shell construction[J]. Defence Technology, 2021, 18(8):1362-1368.
|
[50] |
DONG W K, KIM K T, LEE D U, et al. Influence of poly(vinylidene fluoride) coating layer on exothermic reactivity and stability of fine aluminum particles[J]. Applied Surface Science, 2021, 551:149431.
|
[51] |
KIM D W, KIM K T, MIN T S, et al. Improved energetic-behaviors of spontaneously surface-mediated Al particles[J]. Scientific Reports, 2017, 7(1):4659.
doi: 10.1038/s41598-017-04758-7
pmid: 28680039
|
[52] |
DELISIO J B, HU X L, WU T, et al. Probing the reaction mechanism of aluminum/fluoropolymer composites[J]. Journal of Physical Chemistry B, 2016, 120(24):5534-5542.
|
[53] |
MAO Y F, HE Q Q, WANG J, et al. Rational design of gradient structured fluorocarbon/Al composites towards tunable combustion performance[J]. Combustion and Flame, 2021, 230: 111436.
|
[54] |
YANG H T, HUANG C, CHEN H H. Tuning reactivity of nanoaluminum with fluoropolymer via electrospray deposition[J]. Journal of Thermal Analysis & Calorimetry, 2017, 127(3): 2293-2299.
|
[55] |
WANG H Y, KLINE D J, REHWOLDT M, et al. Architecture can significantly alter the energy release rate from nanocomposite Energetics[J]. ACS Applied Polymer Materials, 2019, 1(5):982-989.
|
[56] |
CHEN S H, YU H S, ZHANG W, et al. Sponge-like Al/PVDF films with laser sensitivity and high combustion performance prepared by rapid phase inversion[J]. Chemical Engineering Journal, 2020, 396:124962.
|
[57] |
VITALE A, QUAGLIO M, MARASSO S L, et al. Direct photolithography of perfluoropolyethers for solvent-resistant microfluidics[J]. Langmuir, 2013, 29(50):15711-15718.
doi: 10.1021/la402755q
pmid: 24266688
|
[58] |
MILLER H A, KUSEL B S, DANIELSON S T, et al. Metastable nanostructured metallized fluoropolymer composites for energetics[J]. Journal of Materials Chemistry, 2013, 1(24):7050-7058.
|
[59] |
KETTWICH S C, KAPPAGANTULA K, KUSEL B S, et al. Thermal investigations of nanoaluminum/perfluoropolyether core-shell impregnated composites for structural energetics[J]. Thermochimica Acta, 2014, 591:45-50.
|
[60] |
WU C C, NIE J X, LI S W, et al. Tuning the reactivity of perfluoropolyether-functionalized aluminum nanoparticles by the reaction interface fuel-oxidizer ratio[J]. Nanomaterials, 2022, 12(3):530-542.
|
[61] |
MCCOLLUM J, PANTOYA M L, IACONO S T. Catalyzing aluminum particle reactivity with a fluorine oligomer surface coating for energy generating applications[J]. Journal of Fluorine Chemistry, 2015, 180: 265-271.
|
[62] |
KAPPAGANTULA K S, FARLEY C, PANTOYA M L, et al. Tuning energetic material reactivity using surface functionalization of aluminum fuels[J]. Journal of Physical Chemistry C, 2012, 116(46):24469-24475.
|
[63] |
CAMPBELL L L, HILL K J, SMITH D K, et al. Thermal analysis of microscale aluminum particles coated with perfluorotetradecanoic(PFTD) acid[J]. Journal of Thermal Analysis and Calorimetry, 2020, 145(10):289-296.
|
[64] |
LIU T K. Experimental and model study of agglomeration of burning aluminized Propellants[J]. Journal of Propulsion and Power, 2015, 21(5): 797-806.
|