[1] |
ZHU C Q, FANG S L, WU Q S, et al. Robust wideband DOA estimation based on element-space data reconstruction in a multi-source environment[J]. IEEE Access, 2021, 9: 43522-43539.
|
[2] |
MORADKHAN S, HOSSEINZADEH S, ZAKER R. Deep-learning based DOA estimation in the presence of multiplicative noise[J]. Wireless Personal Communications, 2022, 126(4): 3093-3101.
|
[3] |
LIU Y, DONG N, ZHANG X H, et al. DOA estimation for massive MIMO systems with unknown mutual coupling based on block sparse Bayesian learning[J]. Sensors, 2022, 22(22): 9833-9843.
|
[4] |
WAGNER M, PARK Y S, GERSTOFT P. Gridless DOA estimation and Root-MUSIC for non-uniform linear arrays[J]. IEEE Transactions on Signal Processing, 2021, 69: 2144-2157.
|
[5] |
ZHANG W, HAN Y, JIN M, et al. An improved Esprit-like algorithm for coherent signals DOA estimation[J]. IEEE Communications Letters, 2020, 24(2): 339-343.
|
[6] |
JIANG Z M, ZHANG P C, RIHAN M, et al. Maximum likelihood approach to DOA estimation using lens antenna array[J]. EURASIP Journal on Wireless Communications and Networking, 2019, 2019: 242.
|
[7] |
MELLER M, STAWIARSKI K. On DOA estimation for rotating arrays using stochastic maximum likelihood approach[J]. IEEE Transactions on Signal Processing, 2020, 68: 5219-5229.
|
[8] |
单泽彪, 常立民, 刘小松, 等. 基于自然对数复合函数近似l0范数的DOA估计[J]. 兵工学报, 2023, 44(5): 1521-1528.
|
|
SHAN Z B, CHANG L M, LIU X S. DOA estimation based on approximate l0 norm of natural logarithm composite function[J]. Acta Armamentarii, 2023, 44(5): 1521-1528. (in Chinese)
|
[9] |
LIU L T, RAO Z J. An adaptive lp norm minimization algorithm for direction of arrival estimation[J]. Remote Sensing, 2022, 14(3): 766-777.
|
[10] |
NEEDELL D, TROPP J A. CoSaMP: iterative signal recovery from incomplete and inaccurate samples[J]. Communications of the ACM, 2010, 53(12): 93-100.
|
[11] |
KEYVAN A, VAHID M S, BEHROUZ M. High-precision OMP-based direction of arrival estimation scheme for hybrid non-uniform array[J]. IEEE Communications Letters, 2020, 24(2): 354-357.
|
[12] |
BABACAN S D, MOLINA R, KATSAGGELOS A K. Bayesian compressive sensing using laplace priors[J]. IEEE Transactions on Image Processing, 2010, 19(1): 53-63.
doi: 10.1109/TIP.2009.2032894
pmid: 19775966
|
[13] |
YANG Z, XIE L H, ZHANG C S. Off-grid direction of arrival estimation using sparse Bayesian inference[J]. IEEE Transactions on Signal Processing, 2013, 61(1): 38-43.
|
[14] |
DAI J S, BAO X, XU W C, et al. Root sparse Bayesian learning for off-grid DOA estimation[J]. IEEE Signal Processing Letters, 2017, 24(1): 46-50.
|
[15] |
HUANG H P, SO H C, ZOUBIR A M. Off-grid direction-of-arrival estimation using second-order Taylor approximation[J]. Signal Processing, 2022, 196: 108513-108519.
|
[16] |
LIU D H, ZHAO Y B. Real-valued sparse Bayesian learning algorithm for off-grid DOA estimation in the beamspace[J]. Digital Signal Processing, 2022, 121: 103322-103328.
|
[17] |
ZENG H W, YUE H, CAO J K, et al. Real-valued direct position determination of quasi-stationary signals for nested arrays: Khatri-Rao subspace and unitary transformation[J]. Sensors, 2022, 22(11): 4209-4224.
|
[18] |
ZHANG Y H, YANG Y X, YANG L. Off-grid DOA estimation through variational Bayesian inference in colored noise environment[J]. Digital Signal Processing, 2021, 111: 102967-102981.
|
[19] |
WANG P Y, YANG H C, YE Z F. An off-grid wideband DOA estimation method with the variational Bayes expectation-maximization framework[J]. Signal Processing, 2022, 193: 108423-108430.
|
[20] |
WANG H F, WANG X P, HUANG M X, et al. A novel variational SBL approach for off-grid DOA detection under nonuniform noise[J]. Digital Signal Processing, 2022, 128: 103622-103630.
|
[21] |
YANG X, ZHI Z, QIN W W. Block sparse recovery approach for DOA estimation in nested array with unknown mutual coupling[J]. Circuits, Systems, and Signal Processing, 2023, 42(8): 5079-5090.
|
[22] |
DONG X D, ZHAO J, SUN M, et al. Non-circular signal DOA estimation with nested array via off-grid sparse Bayesian learning[J]. Sensors, 2023, 23(21): 8907-8922.
|
[23] |
LI J F, ZHANG X F. Combined real-valued subspace based two dimensional angle estimation using L-shaped array[J]. Digital Signal Processing, 2018, 83: 157-164.
|
[24] |
GOTO K, MARUTA K, AHN C. Compressed sensing based low complexity 2D-DOA estimation by separation and pair-matching approach[J]. IEICE Communications Express, 2020, 9(6): 224-229.
|
[25] |
WANG S X, ZHAO Y, LAILA I, et al. Joint 2D DOA and Doppler frequency estimation for L-shaped array using compressive sensing[J]. Journal of Systems Engineering and Electronics, 2020, 31(1): 28-36.
doi: 10.21629/JSEE.2020.01.04
|
[26] |
LIU Z Y, LIU Y, LONG X D, et al. Improved block sparse Bayesian learning based DOA estimation for massive MIMO systems[J]. AEUE-International Journal of Electronics and Communications, 2023, 166: 154666-154676.
|
[27] |
ZHOU H, WEN B Y. Calibration of antenna pattern and phase errors of a cross-loop/monopole antenna array in high-frequency surface wave radars[J]. IET Radar, Sonar and Navigation, 2014, 8(5): 407-414.
|
[28] |
WANG Z S, XIE W, WAN Q. DOA estimation of multipath signals in the presence of gain‐phase errors using an auxiliary source[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2019, 14(7): 1114-1121.
|
[29] |
TIAN Y, SHI J X, YUE H, et al. Calibrating nested sensor arrays for DOA estimation utilizing continuous multiplication operator[J]. Signal Processing, 2020, 176: 107674-107684.
|
[30] |
PENG W C, GUO C J, WANG M, et al. An improved gain-phase error self-calibration method for robust DOA estimation[J]. International Journal of Microwave and Wireless Technologies, 2019, 11(2): 105-113.
|
[31] |
WEI Z Y, WANG W, DONG F W, et al. Self-calibration algorithm with gain-phase errors array for robust DOA estimation[J]. Progress in Electromagnetics Research M, 2021, 99: 1-12.
|
[32] |
GONG Q S, REN S W, ZHONG S N, et al. DOA estimation using sparse array with gain-phase error based on a novel atomic norm[J]. Digital Signal Processing, 2022, 120: 103266-103279.
|
[33] |
ZHANG C, HUANG H P, LIAO B. Direction finding in MIMO radar with unknown mutual coupling[J]. IEEE Access, 2017, 5: 4439-4447.
|