[1] Krim H, Viberg M. Two decades of array signal processing research: the parametric approach[J]. IEEE Signal Processing Magazine, 1996, 13(4):67-94. [2] 吴振, 戴继生, 朱湘临, 等. 互耦效应下一种基于实值稀疏表示的波达方向估计算法[J]. 兵工学报, 2015, 36(2):294-298. WU Zhen,DAI Ji-sheng, ZHU Xiang-lin, et al. A real-valued sparse representation method for DOA estimation with unknown mutual coupling[J]. Acta Armamentarii, 2015, 36(2):294-298.(in Chinese) [3] 邹吉武, 孙大军. 线阵双基地声纳波束零点形成MUSIC算法[J]. 兵工学报, 2010, 31(3):364-368. ZOU Ji-wu, SUN Da-jun. MUSIC algorithm of beam null forming on linear array of bi-static sonar[J]. Acta Armamentarii, 2010, 31(3):364-368.(in Chinese) [4] 王永良, 陈辉, 彭应宁, 等. 空间谱估计理论与算法[M]. 北京:清华大学出版社, 2004:2-5. WANG Yong-liang, CHEN Hui, PENG Ying-ning, et al. Theory and algorithm of spatial spectrum estimation[M]. Beijing: Tsinghua University Press, 2004:2-5.(in Chinese) [5] Carlson B D. Covariance matrix estimation errors and diagonal loading in adaptive arrays[J]. IEEE Transactions on Aerospace Electronic Systems, 1988, 24(4):397-401. [6] Chen Y, Wiesel A, Eldar Y C, et al. Shrinkage algorithms for MMSE covariance estimation[J]. IEEE Transactions on Signal Processing, 2010, 58(10):5016-5029. [7] Tong J, Schreier P J, Guo Q, et al. Shrinkage of covariance matrices for linear signal estimation using cross-validation[J]. IEEE Transactions on Signal Processing, 2016, 64(11):2965-2975. [8] Auguin N, Morales-Jimenez D, Mckay M, et al. Robust shrinkage M-estimators of large covariance matrices[C]∥Proceedings of 2016 IEEE Statistical Signal Processing Workshop. Palma de Mallorca, Baleares, Spain:IEEE, 2016:1-4. [9] Pillai S U, Kwon B H. Forward/backward spatial smoothing techniques for coherent signal identification[J]. IEEE Transactions on Acoustics Speech & Signal Processing, 1989, 37(1):8-15.
[10] Pal P, Vaidyanathan P P. A novel array structure for directions-of-arrival estimation with increased degrees of freedom[C]∥Proceedings of 2010 IEEE International Conference on Acoustics Speech and Signal Processing. Dallas, TX, US:IEEE, 2010:2606-2609. [11] Gershman A B, Bohme J F. Improved DOA estimation via pseudo-random resampling of spatial spectrum[J]. IEEE Signal Processing Letters, 1997, 4(2):54-57. [12] Vasylyshyn V. Removing the outliers in root-MUSIC via pseudo-noise resampling and conventional beamformer[J]. Signal Processing, 2013, 93(12):3423-3429. [13] Qian C, Huang L, So H C. Improved unitary root-MUSIC for DOA estimation based on pseudo-noise resampling[J]. IEEE Signal Processing Letters, 2014, 21(2):140-144. [14] Shaghaghi M, Vorobyov S A. Subspace leakage analysis and improved DOA estimation with small sample size[J]. IEEE Tran-sactions on Signal Processing, 2015, 63(12):3251-3265. [15] Bai Z D, Silverstein J W. No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices[J]. Annals of Probability, 1998, 26(1):316-345. [16] Bai Z D, Silverstein J W. Exact separation of eigenvalues of large dimensional sample covariance matrices[J]. Annals of Probability, 1999, 27(3):1536-1555. [17] 李华, 白志东, 肖玉山. 大维随机矩阵的渐进特征[J]. 东北师大学报:自然科学版, 2014, 46(4):1-8. LI Hua, BAI Zhi-dong, XIAO Yu-shan. The asymptotic properties of the large dimension random matrix[J]. Journal of Northeast Normal University:Natural Science Edition, 2014, 46(4): 1-8.(in Chinese) [18] Mestre X, Lagunas M . Modified subspace algorithms for DoA estimation with large arrays[J]. IEEE Transactions on Signal Processing, 2008, 56(2): 598-614. [19] Stergiopoulos S, Sullivan E J. Extended towed array processing by an overlap correlator[J]. Journal of the Acoustical Society of America, 1989, 86(1): 158-171.
第38卷 第9期2017 年9月兵工学报ACTA ARMAMENTARIIVol.38No.9Sep.2017
|