兵工学报 ›› 2024, Vol. 45 ›› Issue (10): 3530-3537.doi: 10.12382/bgxb.2023.0686
沈业炜1,3, 邢书敏2, 杨茂发2, 张哲3, 徐纪琳3, 赵双良4, 张现仁2,*(), 徐森1
收稿日期:
2023-07-23
上线日期:
2023-12-28
通讯作者:
SHEN Yewei1,3, XING Shumin2, YANG Maofa2, ZHANG Zhe3, XU Jilin3, ZHAO Shuangliang4, ZHANG Xianren2,*(), XU Sen1
Received:
2023-07-23
Online:
2023-12-28
摘要:
为解决3,3-双(叠氮甲基)氧杂环丁烷/四氢呋喃共聚醚(Poly(3,3'-Bis(azidomethyl)oxetane-co-Tetrahydrofuran),PBT)固体推进剂力学性能预估难的问题,分析PBT/双(2,2-二硝基丙醇)缩乙醛/双(2,2-二硝基丙醇)缩甲醛等质量比混合物(A3)/高氯酸铵(Ammonium Perchlorate,AP)体系的拉伸断裂行为,建立描述该体系抗拉强度的幂律方程,并获得界面相、分散相、连续相对抗拉强度的影响规律。实验结果表明:随着氧化剂粒径减小,体积分数增加,推进剂弹性模量、抗拉强度均升高。界面相作用对推进剂抗拉强度起主导作用,数值上与 /r(vf为体积分数,r为氧化剂粒径)正相关。当氧化剂粒径小于100μm时,界面相的主导作用越发明显。分散相的作用随着氧化剂粒径的增大而增大,数值上与vfr5正相关。当粒径大于100μm时,分散相的作用开始变得明显;当粒径大于150μm时,分散相的作用已经接近界面相的作用,这时颗粒间的相互作用不可忽略。相对而言,连续相对推进剂抗拉强度的贡献较小,数值上与(1-vf)5正相关,与界面相相比几乎可以忽略不计。建立的PBT/A3/AP体系抗拉强度幂律方程拟合结果与实验结果吻合度高(R2>0.99),可以为推进剂配方设计提供理论指导,缩短推进剂配方研制周期,降低人力和物力成本。
中图分类号:
沈业炜, 邢书敏, 杨茂发, 张哲, 徐纪琳, 赵双良, 张现仁, 徐森. 基于幂律方程的PBT/A3/AP体系抗拉强度分析[J]. 兵工学报, 2024, 45(10): 3530-3537.
SHEN Yewei, XING Shumin, YANG Maofa, ZHANG Zhe, XU Jilin, ZHAO Shuangliang, ZHANG Xianren, XU Sen. Analysis of Tensile Strength of PBT/A3/AP System Based on Power Law Equation[J]. Acta Armamentarii, 2024, 45(10): 3530-3537.
组分 | PBT | A3 | AP | TDI | 其他 |
质量百分数/% | 12~20 | 16~28 | 50~70 | 0.8~1.2 | 0.8~1.2 |
表1 推进剂配方及组分含量
Table 1 Propellant formulation and component content
组分 | PBT | A3 | AP | TDI | 其他 |
质量百分数/% | 12~20 | 16~28 | 50~70 | 0.8~1.2 | 0.8~1.2 |
序号 | 氧化剂 粒径/μm | 质量 分数/% | 体积 分数/% | 弹性 模量/MPa | 抗拉 强度/kPa |
---|---|---|---|---|---|
1 | 150.0 | 50 | 38 | 0.63 | 209 |
2 | 100.0 | 50 | 38 | 0.63 | 222 |
3 | 62.5 | 50 | 38 | 0.43 | 335 |
4 | 150.0 | 60 | 48 | 1.70 | 305 |
5 | 100.0 | 60 | 48 | 1.00 | 308 |
6 | 62.5 | 60 | 48 | 1.22 | 453 |
7 | 150.0 | 70 | 59 | 4.68 | 420 |
8 | 100.0 | 70 | 59 | 4.85 | 450 |
9 | 62.5 | 70 | 59 | 5.92 | 719 |
表2 氧化剂粒径和体积分数对推进剂抗拉强度的影响
Table 2 Effects of oxidizer radius and volume fraction on tensile strength of propellant
序号 | 氧化剂 粒径/μm | 质量 分数/% | 体积 分数/% | 弹性 模量/MPa | 抗拉 强度/kPa |
---|---|---|---|---|---|
1 | 150.0 | 50 | 38 | 0.63 | 209 |
2 | 100.0 | 50 | 38 | 0.63 | 222 |
3 | 62.5 | 50 | 38 | 0.43 | 335 |
4 | 150.0 | 60 | 48 | 1.70 | 305 |
5 | 100.0 | 60 | 48 | 1.00 | 308 |
6 | 62.5 | 60 | 48 | 1.22 | 453 |
7 | 150.0 | 70 | 59 | 4.68 | 420 |
8 | 100.0 | 70 | 59 | 4.85 | 450 |
9 | 62.5 | 70 | 59 | 5.92 | 719 |
α | 参数 | β | |||
---|---|---|---|---|---|
-2 | -1 | 1 | 2 | ||
1 | a | 4775780.819 | 70582.792 | 6.415 | 0.042 |
R2 | -0.114 | 0.734 | -1.120 | -2.722 | |
2 | a | 9269481.313 | 136894.544 | 12.418 | 0.080 |
R2 | -0.011 | 0.838 | -1.064 | -2.688 | |
3 | a | 16891594.410 | 249281.761 | 22.570 | 0.146 |
R2 | -0.176 | 0.642 | -1.231 | -2.814 |
表3 幂律方程第1项拟合结果
Table 3 Fitting result of first term of power law equation
α | 参数 | β | |||
---|---|---|---|---|---|
-2 | -1 | 1 | 2 | ||
1 | a | 4775780.819 | 70582.792 | 6.415 | 0.042 |
R2 | -0.114 | 0.734 | -1.120 | -2.722 | |
2 | a | 9269481.313 | 136894.544 | 12.418 | 0.080 |
R2 | -0.011 | 0.838 | -1.064 | -2.688 | |
3 | a | 16891594.410 | 249281.761 | 22.570 | 0.146 |
R2 | -0.176 | 0.642 | -1.231 | -2.814 |
γ | 参数 | θ | ||||||
---|---|---|---|---|---|---|---|---|
-1 | 1 | 2 | 3 | 4 | 5 | 6 | ||
a | 127422.486 | 120907.440 | 125175.548 | 127696.993 | 129129.967 | 129970.433 | 130481.609 | |
-1 | b | 1272.862 | 0.287 | 0.002 | 1.359×10-5 | 9.046×10-8 | 5.990×10-10 | 3.972×10-12 |
R2 | 0.849 | 0.953 | 0.967 | 0.971 | 0.972 | 0.972 | 0.972 | |
a | 106860.928 | 114301.828 | 122039.620 | 125584.869 | 127442.964 | 128498.460 | 129131.030 | |
1 | b | 15789.726 | 1.585 | 0.010 | 6.540×10-5 | 4.308×10-7 | 2.844×10-9 | 1.881×10-11 |
R2 | 0.847 | 0.974 | 0.982 | 0.985 | 0.986 | 0.987 | 0.986 | |
a | -998996.539 | 114629.707 | 122279.954 | 125737.718 | 127549.521 | 128580.172 | 129198.648 | |
2 | b | 1135891.082 | 2.972 | 0.019 | 1.230×10-4 | 8.011×10-7 | 5.357×10-9 | 3.547×10-11 |
R2 | 0.838 | 0.961 | 0.971 | 0.976 | 0.979 | 0.980 | 0.980 | |
a | 168462.279 | 117037.751 | 123389.100 | 126447.557 | 128089.241 | 129033.864 | 129604.211 | |
3 | b | -58770.143 | 4.935 | 0.032 | 2.140×10-4 | 1.421×10-8 | 9.429×10-9 | 6.255×10-11 |
R2 | 0.845 | 0.941 | 0.955 | 0.962 | 0.966 | 0.967 | 0.968 |
表4 幂律方程前两项拟合结果
Table 4 Fitting result of the first two terms of power law equation
γ | 参数 | θ | ||||||
---|---|---|---|---|---|---|---|---|
-1 | 1 | 2 | 3 | 4 | 5 | 6 | ||
a | 127422.486 | 120907.440 | 125175.548 | 127696.993 | 129129.967 | 129970.433 | 130481.609 | |
-1 | b | 1272.862 | 0.287 | 0.002 | 1.359×10-5 | 9.046×10-8 | 5.990×10-10 | 3.972×10-12 |
R2 | 0.849 | 0.953 | 0.967 | 0.971 | 0.972 | 0.972 | 0.972 | |
a | 106860.928 | 114301.828 | 122039.620 | 125584.869 | 127442.964 | 128498.460 | 129131.030 | |
1 | b | 15789.726 | 1.585 | 0.010 | 6.540×10-5 | 4.308×10-7 | 2.844×10-9 | 1.881×10-11 |
R2 | 0.847 | 0.974 | 0.982 | 0.985 | 0.986 | 0.987 | 0.986 | |
a | -998996.539 | 114629.707 | 122279.954 | 125737.718 | 127549.521 | 128580.172 | 129198.648 | |
2 | b | 1135891.082 | 2.972 | 0.019 | 1.230×10-4 | 8.011×10-7 | 5.357×10-9 | 3.547×10-11 |
R2 | 0.838 | 0.961 | 0.971 | 0.976 | 0.979 | 0.980 | 0.980 | |
a | 168462.279 | 117037.751 | 123389.100 | 126447.557 | 128089.241 | 129033.864 | 129604.211 | |
3 | b | -58770.143 | 4.935 | 0.032 | 2.140×10-4 | 1.421×10-8 | 9.429×10-9 | 6.255×10-11 |
R2 | 0.845 | 0.941 | 0.955 | 0.962 | 0.966 | 0.967 | 0.968 |
参数 | δ | ||||
---|---|---|---|---|---|
2 | 3 | 4 | 5 | 6 | |
a | 119630.650 | 121993.747 | 122961.169 | 123352.378 | 123505.313 |
b | 0.00917 | 5.881×10-5 | 3.824×10-7 | 2.501×10-9 | 1.644×10-11 |
c | 24.795 | 32.086 | 37.592 | 41.762 | 44.801 |
R2 | 0.983 | 0.988 | 0.990 | 0.991 | 0.992 |
表5 幂律方程3项拟合结果
Table 5 Fitting results of all terms of power law equation
参数 | δ | ||||
---|---|---|---|---|---|
2 | 3 | 4 | 5 | 6 | |
a | 119630.650 | 121993.747 | 122961.169 | 123352.378 | 123505.313 |
b | 0.00917 | 5.881×10-5 | 3.824×10-7 | 2.501×10-9 | 1.644×10-11 |
c | 24.795 | 32.086 | 37.592 | 41.762 | 44.801 |
R2 | 0.983 | 0.988 | 0.990 | 0.991 | 0.992 |
[1] |
庞爱民, 黎小平. 固体推进剂技术的创新与发展规律[J]. 含能材料, 2015, 23(1): 3-6.
|
|
|
[2] |
吴战武, 刘旭峰, 纪明卫, 等. 少烟PBT推进剂制备及性能研究[J]. 爆破器材, 2019, 48(4): 17-22.
|
|
|
[3] |
李苗苗, 陈静静, 郑亭亭, 等. HTPE与PBT对推进剂慢速烤燃特性的影响[J]. 兵器装备工程学报, 2022, 43(6): 13-18.
|
|
|
[4] |
王旭, 徐森, 李苗苗, 等. 钝感氧化剂对PBT基推进剂低易损性的影响[J]. 兵器装备工程学报, 2022, 43(6): 7-12, 18.
|
|
|
[5] |
|
[6] |
|
[7] |
|
[8] |
胡义文, 左海丽, 郑启龙, 等. PBT基复合固体推进剂高温蠕变行为研究[J]. 固体火箭技术, 2018, 41(1): 41-46.
|
|
|
[9] |
张哲, 曾国伟, 张正金, 等. PBT 固体推进剂低温力学性能研究[J]. 推进技术, 2022, 43(9): 384-390.
|
|
|
[10] |
沈业炜, 仉玉成, 童丽伦. 中性键合剂在叠氮高能推进剂中应用工艺研究[J]. 上海航天, 2017, 34(6): 90-95.
|
|
|
[11] |
宋琴, 王艳萍, 廖菊平, 等. 叠氮微烟推进剂宽温域力学性能研究[J]. 火炸药学报, 2021, 44(4): 521-525.
doi: 10.14077/j.issn.1007-7812.202102006 |
|
|
[12] |
谢五喜, 赵昱, 刘运飞, 等. 3,3-二叠氮甲基氧丁环-四氢呋喃共聚醚推进剂的力学性能影响因素[J]. 化工新型材料, 2020, 48(2): 163-165, 172.
|
[27] |
|
[12] |
|
[13] |
赵菲, 孙学红, 郝立新, 等. 聚氨酯弹性体的力学性能影响因素研究[J]. 聚氨酯工业, 2001, 16(1): 9-11.
|
|
|
[14] |
|
[15] |
doi: 10.1016/j.dt.2021.02.007 |
[16] |
张镇国, 何景轩, 沙宝林, 等. 丁羟基固体推进剂的破坏包络及其演化行为研究[J]. 宇航学报, 2021, 42(12): 1571-1578.
|
|
|
[17] |
张炜. 基于材料基因工程的复合固体推进剂力学性能预估方法[J]. 含能材料, 2019, 27(4): 270-273.
|
|
|
[18] |
张高章, 司马凯. 复合固体推进剂力学性能的建模预测研究[J]. 化工新型材料, 2018, 46(12): 160-164.
|
|
|
[19] |
|
[20] |
胡应杰, 陈昌云, 陈凯. 单基和双基发射药力学性能的MD模拟研究[J]. 南京晓庄学院学报, 2007(6): 47-50.
|
|
|
[21] |
王鸿丽, 许进升, 刘宗魁, 等. 复合改性双基推进剂黏弹性-黏塑性-黏损伤本构模型研究[J]. 兵工学报, 2018, 39(7): 1308-1315.
doi: 10.3969/j.issn.1000-1093.2018.07.008 |
|
|
[22] |
田德余, 洪伟良, 刘剑洪, 等. 丁羟固体推进剂力学性能模拟计算[J]. 推进技术, 2008, 29(1): 114-118.
|
|
|
[23] |
贵大勇, 刘剑洪, 田德余, 等. NEPE高能推进剂力学性能模拟计算[J]. 推进技术, 2010, 31(4): 63-66,70.
|
|
|
[24] |
沈业炜, 仉玉成, 童丽伦. PBT钝感高能推进剂高温力学性能调节技术研究[J]. 推进技术, 2018, 39(11): 2595-2600.
|
|
|
[25] |
张涛. Al粉对推进剂力学性能的影响[J]. 化学推进剂与高分子材料, 2023, 21(5): 54-57.
|
|
|
[26] |
袁申, 刘海青, 齐铭, 等. 复合推进剂力学性能及其改善技术研究进展[J]. 兵工自动化, 2022, 41(12): 114-121.
|
|
[1] | 郭学永, 周近强, 李洪亮, 吴成成, 方华, 邓鹏, 朱艳丽, 刘睿. 含氟高分子材料包覆铝核壳材料研究进展[J]. 兵工学报, 2024, 45(5): 1534-1546. |
[2] | 乌布力艾散·麦麦提图尔荪, 吴艳青, 侯晓, 尹欣梅, 张鑫. 固体推进剂黏弹性参数的确定及细观损伤演化[J]. 兵工学报, 2024, 45(4): 1038-1046. |
[3] | 王贵军, 吴艳青, 侯晓, 黄风雷. 基于细观结构的复合固体推进剂含损伤黏弹性本构模型[J]. 兵工学报, 2023, 44(12): 3696-3706. |
[4] | 李磊, 王艳薇, 党力, 汪慧思, 杜芳, 陶博文, 胡翔, 周水平, 顾健. ADN高能固体推进剂的吸湿性[J]. 兵工学报, 2022, 43(7): 1614-1619. |
[5] | 席运志, 李军伟, 陈雪莉, 韩磊, 王宁飞. 基于旋转阀的固体推进剂压强耦合响应测试方法[J]. 兵工学报, 2021, 42(3): 511-520. |
[6] | 侯宇菲, 许进升, 周长省, 陈雄, 李宏文. 复合固体推进剂颗粒与基体初始界面有无缺陷的细观模型对比[J]. 兵工学报, 2020, 41(9): 1800-1808. |
[7] | 蒙君煚, 周霖, 金大勇, 牛国涛, 王亲会. 成型工艺对24-二硝基苯甲醚基熔铸炸药装药质量的影响[J]. 兵工学报, 2018, 39(9): 1719-1726. |
[8] | 叶振威, 余永刚. 脉冲点火射流与高氯酸铵/端羟基聚丁二烯固体推进剂耦合燃烧的试验研究及数值模拟[J]. 兵工学报, 2018, 39(8): 1507-1514. |
[9] | 魏万里, 翁春生, 武郁文, 郑权, 李宝星. 氧化剂喷注面积对连续旋转爆轰波传播特性影响的实验研究[J]. 兵工学报, 2018, 39(12): 2345-2353. |
[10] | 牟科赛, 古勇军, 蔺向阳, 郑文芳, 潘仁明. 水溶性氧化剂在微孔球形药中原位超细化分散方法研究[J]. 兵工学报, 2018, 39(10): 1958-1964. |
[11] | 王维伦, 李建民, 杨荣杰, 刘筑, 李世鹏. 含氟有机添加剂对含铝聚醚推进剂燃烧凝聚相产物的影响[J]. 兵工学报, 2017, 38(4): 704-710. |
[12] | 李吉祯, 樊学忠, 张国防, 蔚红建, 唐秋凡, 付小龙. 含能黏合剂3-硝酸酯甲基-3-甲基氧丁环聚合物的固化体系研究[J]. 兵工学报, 2016, 37(8): 1401-1408. |
[13] | 杨后文, 余永刚, 叶锐. 不同火焰环境下固体火箭发动机烤燃特性数值模拟[J]. 兵工学报, 2015, 36(9): 1640-1646. |
[14] | 邹权, 邓国栋, 郭效德, 姜炜, 李凤生. 近红外在线监测改性双基吸收药混合均匀度研究[J]. 兵工学报, 2014, 35(7): 977-981. |
[15] | 宋秀铎, 郑伟, 裴江峰, 张军, 王江宁, 赵凤起. 黑索今含量对BAMO-AMMO基推进剂力学性能的影响[J]. 兵工学报, 2014, 35(6): 828-833. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||