欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2024, Vol. 45 ›› Issue (10): 3530-3537.doi: 10.12382/bgxb.2023.0686

• • 上一篇    下一篇

基于幂律方程的PBT/A3/AP体系抗拉强度分析

沈业炜1,3, 邢书敏2, 杨茂发2, 张哲3, 徐纪琳3, 赵双良4, 张现仁2,*(), 徐森1   

  1. 1 南京理工大学 化学与化工学院, 江苏 南京 210094
    2 北京化工大学 化学工程学院, 北京 100029
    3 上海航天动力技术研究所, 浙江 湖州 313000
    4 广西大学 发展规划处, 广西 南宁 530004

Analysis of Tensile Strength of PBT/A3/AP System Based on Power Law Equation

SHEN Yewei1,3, XING Shumin2, YANG Maofa2, ZHANG Zhe3, XU Jilin3, ZHAO Shuangliang4, ZHANG Xianren2,*(), XU Sen1   

  1. 1 School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
    2 School of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
    3 Shanghai Space Propulsion Technology Research Institute, Huzhou 313000, Zhejiang, China
    4 Division of Development & Strategic Planning, Guangxi University, Nanning 530004, Guangxi, China
  • Received:2023-07-23 Online:2023-12-28

摘要:

为解决3,3-双(叠氮甲基)氧杂环丁烷/四氢呋喃共聚醚(Poly(3,3'-Bis(azidomethyl)oxetane-co-Tetrahydrofuran),PBT)固体推进剂力学性能预估难的问题,分析PBT/双(2,2-二硝基丙醇)缩乙醛/双(2,2-二硝基丙醇)缩甲醛等质量比混合物(A3)/高氯酸铵(Ammonium Perchlorate,AP)体系的拉伸断裂行为,建立描述该体系抗拉强度的幂律方程,并获得界面相、分散相、连续相对抗拉强度的影响规律。实验结果表明:随着氧化剂粒径减小,体积分数增加,推进剂弹性模量、抗拉强度均升高。界面相作用对推进剂抗拉强度起主导作用,数值上与 v f 2/r(vf为体积分数,r为氧化剂粒径)正相关。当氧化剂粒径小于100μm时,界面相的主导作用越发明显。分散相的作用随着氧化剂粒径的增大而增大,数值上与vfr5正相关。当粒径大于100μm时,分散相的作用开始变得明显;当粒径大于150μm时,分散相的作用已经接近界面相的作用,这时颗粒间的相互作用不可忽略。相对而言,连续相对推进剂抗拉强度的贡献较小,数值上与(1-vf)5正相关,与界面相相比几乎可以忽略不计。建立的PBT/A3/AP体系抗拉强度幂律方程拟合结果与实验结果吻合度高(R2>0.99),可以为推进剂配方设计提供理论指导,缩短推进剂配方研制周期,降低人力和物力成本。

关键词: 3,3-双(叠氮甲基)氧杂环丁烷/四氢呋喃共聚醚, 固体推进剂, 抗拉强度, 氧化剂, 幂律方程

Abstract:

In order to solve the difficulty in predicting the mechanical properties of poly(3,3'-bis(azidomethyl)oxetane-co-tetrahydrofuran) (PBT) solid propellant, the tensile fracture behavior of PBT/A3/AP system is analyzed. A power law equation describing the tensile strength of the system is established. The influence rules of interfacial phase, dispersed phase and continuous phase on tensile strength were obtained. The results show that the elastic modulus and tensile strength of propellant increase with the decrease in oxidant particle size and the increase in volume fraction. The influence of interfacial phase interaction on the tensile strength of propellant is dominant, which is positively correlated with v f 2/r(vf: volume fraction, r: oxidant particle size). When the oxidant particle size is less than 100μm, the dominant role of interfacial phase becomes more obvious. The effect of dispersed phase increases with the increase in oxidant particle size. The value is positively correlated with vfr5. When the particle size is larger than 100μm, the effect of dispersed phase becomes apparent. When the particle size is larger than 150μm, the effect of dispersed phase approaches that of the interfacial phase. In this case, the interaction between particles cannot be ignored. The continuous phase has little influence on the tensile strength of propellant. The value is positively correlated with (1-vf)5. Compared with the interface phase, the effect of continuous phase is almost negligible. The fitting results of the power law equation for the tensile strength of PBT solid propellant are in good agreement with the experimental results(R2>0.99). The calculated results can be used as reference for propellant formulation design, thereby reducing the development cycle while simultaneously lowering the costs in terms of manpower and resources.

Key words: Poly(3,3'-Bis(azidomethyl)oxetane-co-Tetrahydrofuran), solid propellant, tensile strength, oxidizer, power law equation

中图分类号: