欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2014, Vol. 35 ›› Issue (11): 1914-1921.doi: 10.3969/j.issn.1000-1093.2014.11.025

• 论文 • 上一篇    下一篇

改进的离散小波-优化极限学习机在倾转旋翼机故障诊断中的应用

严峰1, 陈晓2, 王新民2, 彭程2, 胡亚洲2   

  1. (1.中航工业直升机设计研究所,江西 景德镇 330001, 2.西北工业大学 自动化学院, 陕西 西安 710129)
  • 收稿日期:2013-11-24 修回日期:2013-11-24 上线日期:2015-01-05
  • 作者简介:严峰(1978—),男,高级工程师

Fault Diagnosis of Tiltrotor Aircraft via Improved Discrete Wavelet-OMELM

YAN Feng1, CHEN Xiao2, WANG Xin-min2, PENG Cheng2, HU Ya-zhou2   

  1. (1.AVIC China Helicopter Research and Development Institute, Jingdezhen 330001, Jiangxi, China;2.School of Automation, Northwestern Polytechnical University, Xi’an 710129, Shaanxi, China)
  • Received:2013-11-24 Revised:2013-11-24 Online:2015-01-05

摘要: 针对倾转旋翼机飞控系统的故障诊断问题,提出一种改进的离散小波-优化极限学习机(OMELM)的故障诊断算法。提出自适应启发式小波去噪方法对采集的信号进行消噪,定义了帕塞瓦尔能量用来提取测量信号经离散小波变换分解后的特征,并对OMELM进行了改进。将提取的故障能量特征进行归一化后输入到改进的OMELM多分类器中进行分类,以美国XV-15倾转旋翼机为例进行仿真验证。结果表明文中方法平均辨识率高,诊断时间短,对未来我国进行倾转旋翼机故障诊断的研究有一定参考价值。

关键词: 航空、航天系统工程, 倾转旋翼机, 故障诊断, 离散小波, 优化极限学习机, 自适应启发式小波去噪

Abstract: An improved discrete wavelet-optimization method-based extreme learning machine (OMELM) algorithm is presented for the fault diagnosis of flight control system in tiltrotor aircraft. An adaptive heuristic wavelet denoising method is used to denoise the sampled signal. Feature vector of each layer is extracted using Parseval energy after the discrete wavelet decomposition of fault signal. The energy feature is normalized as the improved OMELM network input, and then the actuator fault models is classified using the improved OMELM network. Finally, an XV-15 tiltrotor aircraft mode is validated by simulation. The results show that the method has a higher average recognition rate, and needs a short diagnosis time.

Key words: aerospace system engineering, tiltrotor aircraft, fault diagnosis, discrete wavelet transform, optimization method-based extreme learning machine, adaptive heuristic wavelet denoising

中图分类号: