[1] RINEY T D. Chapter V-Numerical evaluation of hypervelocity impact phenomena[M]∥RAY K. High-Velocity Impact Phenomena.Salt Lake City, UT, US:Academic Press, 1970:157-212. [2] STILP A J, WEBER K. Debris clouds behind double-layer targets[J]. International Journal of Impact Engineering, 1997, 20(6/7/8/9/10):765-778. [3] CHERNIAEV A, TELICHEV I. Sacrificial bumpers with high-impedance ceramic coating for orbital debris shielding: a preliminary experimental and numerical study[J]. International Journal of Impact Engineering, 2018, 119:45-56. [4] 侯明强, 龚自正, 徐坤博,等. 密度梯度薄板超高速撞击特性的实验研究[J]. 物理学报, 2014, 63(2):206-215. HOU M Q, GONG Z Z, XU K B, et al. Experimental study on hypervelocity impact characteristics of density-gradeth in-plate[J]. Acta Physica Sinica,2014,63(2):206-215.(in Chinese) [5] ZHANG P L, GONG Z Z, TIAN D B, et al. Comparison of shielding performance of Al/Mg impedance-graded-material-enhanced and aluminum Whipple shields[J]. International Journal of Impact Engineering, 2019, 126:101-108. [6] HUANG X, LING Z, LIU Z D, et al. Amorphous alloy reinforced whipple shield structure[J]. International Journal of Impact Engineering, 2012, 42:1-10. [7] REN S Y, LONG R R, ZHANG Q M, et al. The hypervelocity impact resistance behaviors of NbC/Al2024 ceramic-metal compo-sites[J]. International Journal of Impact Engineering, 2021, 148:103759. [8] 武强, 张庆明, 龙仁荣,等. 含能材料防护屏在球形弹丸超高速撞击下的穿孔特性研究[J]. 兵工学报, 2017, 38(11):2126-2133. WU Q, ZHANG Q M, LONG R R, et al.Perforation characteristics of energetic material shield induced by hypervelocity impact of spherical projectile[J]. Acta Armamentarii,2017, 38(11):2126-2133.(in Chinese) [9] LIU G R, LIU M B. 光滑粒子流体动力学:一种无网格粒子法[M]. 韩旭,杨刚,强洪夫,译.长沙:湖南大学出版社, 2005:37-40. LIU G R, LIU M B.Smoothed particle hydrodynamics: a meshfree particle method [M]. HAN X, YANG G, QIANG H F, translated. Changsha:Hunan University Press, 2005:37-40.(in Chinese) [10] MONAGHAN J J, LATTANZIO J C. A refined particle method for astrophysical problems[J]. Astronomy & Astrophysics, 1985, 149:135-143. [11] 张庆明, 黄风雷. 超高速碰撞动力学引论[M]. 北京:科学出版社, 2000:44-50. ZHANG Q M, HUANG F L.Introduction to hypervelocity impact dynamics[M]. Beijing:Science Press,2000:44-50.(in Chinese) [12] TILLOTSON J H.Metallic equations of state for hypervelocity impact: AD486711[R].Kirtland AFB, NM, US:Air Force Weapons Laboratory,1962. [13] HIERMAIER S, KONKE D, STILP A J, et al. Computational simulation of the hypervelocity impact of Al-spheres on thin plates of different materials[J].International Journal of Impact Engineering,1997, 20(1/2/3/4/5):363-374. [14] 汤文辉, 张若棋. 物态方程理论及计算概论[M]. 北京:高等教育出版社, 2008:138-143. TANG W H, ZHANG R Q. Introduction theory and computation of equations of state[M].Beijing:Higher Education Press,2008:138-143.(in Chinese) [15] FUDALI R F. Impact cratering: ageologic process[J]. The Journal of Geology, 1989, 97(6):773. [16] SUGITA S, SCHULTZ P H. Interactions between impact-induced vapor clouds and the ambient atmosphere: 2. Theoretical modeling[J]. Journal of Geophysical Research: Planet, 2003, 108(E6): 5052. [17] BRUNDAGE A L. Implementation of Tillotson equation of state for hypervelocity impact of metals, geologic materials, and liquids[J]. Procedia Engineering, 2013, 58:461-470. [18] JOHNSON B C, BOWLING T J, MELOSH H J. Jetting during vertical impacts of spherical projectiles[J]. Icarus, 2014, 238:13-22. [19] STEINBERG D J, COCHRAN S G, GUINAN M W. A constitutive model for metals applicable at high-strain rate[J]. Journal of Applied Physics, 1980, 51(3):1498-1504. [20] SCHONBERG WP. A first-principles based model characterizing the debris cloud created in a hypervelocity impact[C]∥Procee-dings of Space Programs and Technologies Conference and Exhibit. Huntsville,AL,US:AIAA,1994.
|