兵工学报 ›› 2018, Vol. 39 ›› Issue (10): 2016-2047.doi: 10.3969/j.issn.1000-1093.2018.10.018
邸德宁1, 陈小伟1,2, 文肯1,3, 张春波3
收稿日期:
2018-05-30
修回日期:
2018-05-30
上线日期:
2018-11-19
作者简介:
邸德宁(1993—), 男,见习工程师,硕士。E-mail: daviddidn@163.com;基金资助:
DI De-ning1, CHEN Xiao-wei1,2,WEN Ken1,3, ZHANG Chun-bo3
Received:
2018-05-30
Revised:
2018-05-30
Online:
2018-11-19
摘要: 弹丸超高速撞击薄板后破碎形成碎片云,被应用于空间碎片防护设计。针对薄板超高速正撞击情况下产生的碎片云进行分析,梳理了主要研究进展及不足,按碎片云形成过程、碎片云分布特性、碎片云模型和碎片云侵彻性能4个部分进行了阐述。综合评述了近30年碎片云研究的进展,提出了未来研究发展趋势和若干建议,以供相关领域研究者参考。
中图分类号:
邸德宁, 陈小伟, 文肯, 张春波. 超高速碰撞产生的碎片云研究进展[J]. 兵工学报, 2018, 39(10): 2016-2047.
DI De-ning, CHEN Xiao-wei,WEN Ken, ZHANG Chun-bo. A Review on the Study of Debris Cloud Produced by Normal Hypervelocity Impact upon a Thin Plate[J]. Acta Armamentarii, 2018, 39(10): 2016-2047.
[1] IADC Protection manual, IADC-04-03, Version 7.0[M]. [S.I.]: Inter-Agency Space Debris Coordination Committee, 2014. [2] Christiansen E L. Meteoroid and debris shielding, TP-2003-210788[R]. Houston, TX, US:NASA,2003:3-4. [3] 王海福, 冯顺山, 刘有英. 空间碎片导论[M]. 北京:科学出版社,2010. WANG Hai-fu, FENG Shun-shan, LIU You-ying. Introduction to space debris[M]. Beijing:Science Press, 2010. (in Chinese) [4] Whipple F L. Meteorites and space travel[J]. The Astronomical Journal,1947,52(5):132-137. [5] 郑建东, 龚自正, 席爽, 等. 超高速撞击碎片云模型研究综述[C]∥第六届全国空间碎片学术交流会论文集. 成都:国家国防科技工业局系统工程一司,2011:671-682. ZHENG Jian-dong, GONG Zi-zheng, XI Shuang, et al. Review of debris cloud models produced by hypervelocity impact of space debris[C]∥Proceedings of the 6th National Symposium on Space Debris.Chendu: the First Department of System Enginee- ring, State Administration of Science, Technology and Industry for National Defense,2011:671-682. (in Chinese) [6] 柳森, 黄洁, 李毅, 等. 中国空气动力研究与发展中心的空间碎片超高速撞击试验研究进展[J]. 载人航天,2011(6):17-23. LIU Sen, HUANG Jie, LI Yi, et al. Recent advancement of hypervelocity impact tests at HAI, CARDC[J]. Manned Spaceflight, 2011(6):17-23.(in Chinese) [7] 曹燕, 牛锦超, 牟永强, 等. CAST激光驱动微小飞片及其超高速撞击效应研究进展[J]. 航天器环境工程,2015,32(2): 162-175. CAO Yan, NIU Jin-chao, MU Yong-qiang, et al.Recent progresses of laser-driven flyer technique and micro-space debris hypervelocity impact tests in China Academy of Space Technology[J]. Spacecraft Environment Engineering, 2015,32(2):162-175.(in Chinese) [8] 韩增尧, 庞宝君. 空间碎片防护研究最新进展[J]. 航天器环境工程, 2012,29(4):369-378. HAN Zeng-yao, PANG Bao-jun. Review of recent development of space debris protection research[J]. Spacecraft Environment Engineering, 2012,29(4):369-378.(in Chinese) [9] Anderson C E, Trucano T G, Mullin S A. Debris cloud dyna- mics[J]. International Journal of Impact Engineering,1990,9(1): 89-113. [10] Maiden C J, Mcmillan A R. An investigation of the protection afforded a spacecraft by a thin shield[J].AIAA Journal, 1964,2(11): 1992-1998. [11] 龙仁荣, 张庆明. 超高速弹丸碰撞薄板产生碎片云的理论模型评述[C]∥第八届全国冲击动力学学术讨论会.银川:中国力学学会,2007:82-89. LONG Ren-rong, ZHANG Qing-ming. Review of theoretical models of debris cloud produced by hypervelocity impact of a projectile with a thin plate[C]∥Proceedings of the 8th National Symposium on Impact Dynamics. Yinchuan:Chinese Society of Theoretical and Applied Mechanics,2007:82-89. (in Chinese) [12] Yew C H, Grady D E, Lawrence R J. A simple model for debris clouds produced by hypervelocity particle impact[J]. International Journal of Impact Engineering,1993,14(1):851-862. [13] 汪庆桃,吴克刚, 陈志阳. 圆柱形长杆超高速正碰撞薄板结构破碎效应[J]. 振动与冲击, 2017,36(5):54-60. WANG Qing-tao, WU Ke-gang, CHEN Zhi-yang. Fragmentation effect of a long cylindrical rod with a hypervelocity normally impacting a thin plate structure[J]. Journal of Vibration and Shock,2017,36(5):54-60. (in Chinese) [14] 钱伟长. 穿甲力学[M]. 北京:国防工业出版社, 1984:336-340. QIAN Wei-chang.Armor piercing mechanics[M]. Beijing: National Defense Industry Press,1984:336-340.(in Chinese) [15] Morrison R H. A preliminary investigation of projectile shape effects in hypervelocity impact on a double-sheet structure, NASA TN D-6944[R]. Washington DC, US: National Aeronautics and Space Administration,1972. [16] 张庆明, 黄风雷. 超高速碰撞动力学引论[M]. 北京:科学出版社,2000. ZHANG Qing-ming, HUANG Feng-lei. Introduction to hypervelocity impact dynamics[M]. Beijing: Science Press, 2000. (in Chinese) [17] Kawai N, Zama S, Takemoto W, et al.Stress wave and damage propagation in transparent materials subjected to hypervelocity impact[J]. Procedia Engineering, 2015,103:287-293. [18] Alme M L, Rhoades C E. A computational study of projectile melt in impact with typical whipple shields[J]. International Journal of Impact Engineering, 1995,17(1):1-12. [19] Kipp M E, Grady D E, Swegle J W. Numerical and experimental studies of high-velocity impact fragmentation[J]. International Journal of Impact Engineering, 1993,14(1/2/3/4):427-438. [20] Piekutowski A J. Formation and description of debris cloud produced by hypervelocity impact, NASA CR-4707[R]. Washington DC, US: National Aeronautics and Space Administration, 1996. [21] Ang J A. Impact flash jet initiation phenomenology[J]. International Journal of Impact Engineering,1990,10(1):23-33. [22] Wen K, Chen X W, Di D N. Analysis model for shock wave within hypervelocity impact[C]∥Proceedings of the 2nd International Conference on Impact Loading of Structures and Materials. Xi'an, Shaanxi, China: International Society of Impact Engineering, 2018. [23] Grady D E, Kipp M E. Impact failure and fragmentation pro- perties of metals, SAND98-0387 UC-704[R]. Albuquerque, NM, US: Sandia National Laboratory, 1998:33-34. [24] 侯明强, 龚自正, 徐坤博, 等. 密度梯度薄板超高速撞击特性的实验研究[J]. 物理学报, 2014,63(2): 024701. HOU Ming-qiang, GONG Zi-zheng, XU Kun-bo, et al. Experimental study on hypervelocity impact characteristics of density-grade thin-plate[J]. Acta Physica Sinica,2014,63(2):024701. (in Chinese) [25] Song W J, Chen X W, Chen P. Effect of compressibility on the hypervelocity penetration[J]. Acta Mechanica Sinica,2018, 34(1): 82-98. [26] Song W J, Chen X W, Chen P. The effects of compressibility and strength on penetration of long rod and jet[J]. Defence Technology, 2018, 14(2): 99-108. [27] Song W J, Chen X W, Chen P. A simplified approximate mo- del of compressible hypervelocitypenetration[J]. Acta Mechanica Sinica, 2018(1):1-15. [28] 宋文杰.弹/靶材料可压缩性对超高速侵彻影响的研究[D].北京:北京大学, 2018. SONG Wen-jie. Study of the effect of penetrator/target material's compressibility on hypervelocity penetration[D]. Beijing: Peking University,2018. (in Chinese) [29] Piekutowski A J. Debris clouds generated by hypervelocity impact of cylindrical projectiles with thin aluminum plates[J]. International Journal of Impact Engineering, 1987,5(1):509-518. [30] Piekutowski A J. Fragmentation-initiation threshold for spheres impacting at hypervelocity[J]. International Journal of Impact Engineering, 2003,29(1):563-574. [31] 汪庆桃,吴克刚, 李必红, 等. 球形弹丸超高速碰撞破碎特性[J]. 振动与冲击, 2014,33(22):46-50. WANG Qing-tao, WU Ke-gang, LI Bi-hong, et al.Fragmentation properties of spherical projectiles impacting at hypervelocity[J]. Journal of Vibration and Shock, 2014,33(22):46-50. (in Chinese) [32] Christiansen E L. Evaluation of space station meteoroid/debris shielding materials, Eagle Engineering Report No. 87-163[R].Houston, TX, US: Eagle Engineering, Inc., 1987. [33] Mcnight D S, Johnson N L, Fudge M L, et al. Satellite orbital debris characterization impact test (SOCIT) series data collection report, NAS9-19215[R].Colorado Springs, CO, US: Kaman Sciences Corporation. 1995. [34] Christiansen E L, Kerr J H. Projectile shape effects on shielding performance at 7 km/s and 11 km/s[J]. International Journal of Impact Engineering, 1997,20(1):165-172. [35] 徐坤博, 龚自正, 侯明强, 等. 基于特征长度的非球形弹体超高速撞击碎片云特性研究[J]. 高压物理学报, 2012,26(1): 7-17. XU Kun-bo, GONG Zi-zheng, HOU Ming-qiang, et al. Debris cloud characteristics of non-spherical projectile based on characteristic length[J]. Chinese Journal of High Pressure Physics,2012,26(1):7-17. (in Chinese) [36] 张伟, 马文来, 管公顺, 等. 非球弹体超高速撞击航天器防护结构数值模拟[J]. 爆炸与冲击, 2007,27(3):240-245. ZHANG Wei, MA Wen-lai, GUAN Gong-shun, et al. Numerical simulation of non-spherical projectiles hypervelocity impact on spacecraft shield configuration[J]. Explosion and Shock Waves,2007,27(3):240-245. (in Chinese) [37] 马文来, 张伟, 管公顺, 等. 椭球弹体超高速撞击防护屏碎片云数值模拟[J]. 材料科学与工艺, 2005,13(3):294-298. MA Wen-lai, ZHANG Wei, GUAN Gong-shun, et al. Numerical simulation of debris cloud produced by ellipsoidal projectile hypervelocity impact on bumper[J]. Materials Science & Technology, 2005,13(3):294-298. (in Chinese) [38] 刘武刚, 李凌江, 王建民, 等. 多次撞击下复杂结构损伤位置的声发射定位方法[C]∥第二届全国超高速碰撞会议论文集. 北京:北京卫星环境工程研究所,2016:174-178. LIU Wu-gang, LI Ling-jiang, WANG Jian-min, et al. A da- mage location detecting method using acoustic emission of complex structural under multiple impact[C]∥Proceedings of the 2nd National Conference on Hypervelocity Impact. Beijing: Beijing Institute of Satellite Environmental Engineering, 2016:174-178. (in Chinese) [39] 杨勇, 朱炜炜, 李保勇. 空间碎片高速撞击损伤探测系统设计与实现[C]∥第二届全国超高速碰撞会议论文集.北京:北京卫星环境工程研究所, 2016:106-114. YANG Yong, ZHU Wei-wei, LI Bao-yong.Design and implementation of damage detection system under high-velocity impact by space debris[C]∥Proceedings of the 2nd National Conference on Hypervelocity Impact.Beijing: Beijing Institute of Satellite Environmental Engineering,2016: 106-114. (in Chinese) [40] Burchell M J, Corsaro R, Giovane F, et al.A new cosmic dust detector with a novel method using a resistive grid sensitive to hypervelocity impacts[J]. Procedia Engineering, 2013,58:68-76. [41] Piekutowski A J, Poormon K L.Holes formed in thin aluminum sheets by spheres with impact velocities ranging from 2 to 10 km/s[J]. Procedia Engineering, 2015,103:482-489. [42] Turpin W C, Carson J M. Hole growth in thin plates perforated by hypervelocity pellets, AFML-TR-70-83[R].Wright-Patterson Air Force Base,OH, US:US Air Force Materials Laboratory,1970. [43] Lamberson L, Rosakis A J. Modified charters model for single wall perforation[J]. Procedia Engineering, 2013,58:214-222. [44] Maiden C J, Gehring J W, McMillan A R. Investigation of fundamental mechanism of damage to thin targets by hypervelocity projectiles, TR63-225[R]. Santa Barbara, CA, US: General Motors Defense Research Laboratory, 1963. [45] Sorenson N R. Systematic investigation of crater formations in metals[C]∥Proceedings of the 7th Hypervelocity Impact Symposium.Tampa, FL, US:U.S. Army/U.S. Air Force/U.S. Navy, 1964:281-325. [46] Sawle D R. Hypervelocity Impact in thin sheets and semi-infinite targets at 15 km/s[J]. AIAA Journal, 1970, 8(7): 1240-1244. [47] Schonberg W P. Hypervelocity impact penetration phenomena in aluminum space structures[J]. Journal of Aerospace Engineering, 1990,3(3):173-185. [48] Hill S A. Determination of an empirical model for the prediction of penetration hole diameter in thin plates from hypervelocity impact[J]. International Journal of Impact Engineering, 2004,30(3): 303-321. [49] Abbas H, Alsayed S H, Almusallam T H, et al.Characterization of hole-diameter in thin metallic plates perforated by spherical projectiles using genetic algorithms[J]. Archive of Applied Mechanics, 2011,81(7):907-924. [50] Rolsten R F, Wellnitz J N, Hunt H H. An example of hole dia- meter in thin plates due to hypervelocity impact[J].Journal of Applied Physics, 1964,34(3):556-559. [51] Carey W C, McDonnell J A M, Dixon D G. Capture cells: decoding the impacting projectile parameters[C]∥Proceedings of Lunar and Planetary Science Conference.Houston, TX, US: the Lunar and Planetary Institute, 1985:111-112. [52] Housen K R, Schmidt R M. Hole size from impacts at simulated velocitiesto 23 km/s[J]. International Journal of Impact Engineering, 1997,20(1):399-410. [53] Loft K, Price M C, Cole M J, et al.Impacts into metals targets at velocities greater than 1 km/s: a new online resource for the hypervelocity impact community and an illustration of the geometric change of debris cloud impact patterns with impact velocity[J]. International Journal of Impact Engineering,2013,56(6):47-60. [54] Piekutowski A J. Holes produced in thin aluminum sheets by the hypervelocity impact of aluminum spheres[J]. International Journal of Impact Engineering, 1999,23(1):711-722. [55] Piekutowski A J, Poormon K L. Impact of thin aluminum sheets with aluminum spheres up to 9 km/s[J]. International Journal of Impact Engineering, 2008,35(12):1716-1722. [56] Myers B A, Schonberg W P, Williamsen J E. Temperature effects on bumper hole diameters for impact velocities from 2 to 7 km/s[J]. International Journal of Impact Engineering, 2003,29(1/2/3/4/5/6/7/8/9/10): 487-495. [57] Francesconi A, Giacomuzzo C, Grande A M, et al.Comparison of self-healing ionomer to aluminium-alloy bumpers for protecting spacecraft equipment from space debris impacts[J]. Advances in Space Research, 2013,51(5):930-940. [58] Piekutowski A J. Characteristics of debris clouds produced by hypervelocity impact of aluminum spheres with thin aluminum plates[J]. International Journal of Impact Engineering, 1993,14(1/2/3/4): 573-586. [59] 安凯. 球形弹丸正撞击碎片云头部形状的辨识[J]. 爆炸与冲击, 2014,34(4):404-408. AN Kai. Head shape recognition of debris cloud produced by normal impact of spherical projectile[J]. Explosion and Shock Waves, 2014,34(4):404-408. (in Chinese) [60] Piekutowski A J. Debris clouds produced by the hypervelocity impact of non-shperical projectiles[J]. International Journal of Impact Engineering, 2001,26(1):613-624. [61] 管公顺, 牛瑞涛, 庞宝君. 铝球弹丸高速正撞击铝网防护屏破碎特性的数值模拟研究[J]. 高压物理学报, 2013,27(5):671-676. GUAN Gong-shun, NIU Rui-tao, PANG Bao-jun. Numerical simulation of al sphere fragmentation under high-velocity normal impacting aluminum mesh bumper[J]. Chinese Journal of High Pressure Physics, 2013,27(5):671-676. (in Chinese) [62] Sibeaud J M, Puillet C. Effects of debris cloud interaction with satellites critical equipments-experiments and modeling[J]. Procedia Engineering,2015,103:561-568. [63] Piekutowski A J. Debris clouds generated by hypervelocity impact of cylindrical projectiles with thin aluminum plates[J]. International Journal of Impact Engineering,1987,5(1):509-518. [64] 刘先应, 盖芳芳, 李志强, 等. 锥形弹丸超高速撞击防护屏的碎片云特性参数研究[J]. 高压物理学报, 2016,30(3):249-257. LIU Xian-ying, GAI Fang-fang, LI Zhi-qiang, et al. Characteristic parameters of debris cloud produced by hypervelocity impact of conical projectiles on spacecraft shield[J]. Chinese Journal of High Pressure Physics,2016,30(3):249-257. (in Chinese) [65] Rosenblatt M, Kreyenhagen K N, Romine W D. Numerical studies of ejecta characteristics behind thin plates[J]. AIAA Journal, 1970, 8(6): 1005-1011. [66] Williamsen J, Howard E. Video imaging of debris clouds following penetration of lightweight spacecraft materials[J]. International Journal of Impact Engineering, 2001,26(1/2/3/4/5/6/7/8/9/10):865-877. [67] 柳森, 谢爱民, 黄洁,等. 超高速碰撞碎片云的激光阴影照相技术[J]. 实验流体力学, 2005,15(2):35-39. LIU Sen, XIE Ai-min, HUANG Jie, et al. Laser shadowgraph for the visualization of hypervelocity impact debris cloud[J]. Journal of Experiments in Fluid Mechanics,2005,15(2):35-39. (in Chinese) [68] Swift H F, Preonas D D, Turpia W C, et al. Debris clouds behind plates impacted by hypervelocity pellets[J]. Journal of Spacecraft and Rockets, 1970,7(3):313-318. [69] Piekutowski A J. A simple dynamic model for the formation of debris clouds[J]. International Journal of Impact Engineering,1990,10(1):453-471. [70] Francesconi A, Giacomuzzo C, Feltrin F,et al.An engineering model to describe fragments clouds propagating inside spacecraft in consequence of space debris impact on sandwich panel structures[J]. Acta Astronautica, 2015,116:222-228. [71] Akahoshi Y, Kaji M, Hata H. Measurement of mass, spray angle and velocity distribution of fragment cloud[J]. International Journal of Impact Engineering, 2003,29(1/2/3/4/5/6/7/8/9/10):845-853. [72] 汪庆桃,张庆明, 吴克刚, 等. 超高速碰撞形成一次碎片云特性[J]. 国防科技大学学报, 2013,35(5):124-128. WANG Qing-tao, ZHANG Qing-ming, WU Ke-gang, et al. Description of the first debris clouds formed by hypervelocity impact[J]. Journal of National University of Defense Technology,2013,35(5):124-128. (in Chinese) [73] Kipp M E, Grady D E, Swegle J W. Experimental and numerical studies of high-velocity impact fragmentation, SAND93-0773 UC-700[R]. Albuquerque, NM, US: Sandia National Laboratories, 1993:21-25. [74] Century Dynamics, Inc.. AUTODYN SPH user manual& tutorial, revision 4.3[R].Concord, CA, US:Century Dynamics, Inc., 2005:3-5. [75] Liu G R, Liu M B. 光滑粒子流体动力学:一种无网格粒子法[M]. 韩旭, 杨刚, 强洪夫,译. 长沙:湖南大学出版社, 2005:27-32. Liu G R, Liu M B. Smoothed particle hydrodynamics: a meshfree particle method[M]. HAN Xu, YANG Gang, QIANG Hong-fu, translated. Changsha: Hunan University Press, 2005:27-32. (in Chinese) [76] 张伟, 庞宝君, 贾斌, 等. 弹丸超高速撞击防护屏碎片云数值模拟[J]. 高压物理学报,2004,18(1):47-52. ZHANG Wei, PANG Bao-jun, JIA Bin, et al. Numerical simulation of debris cloud produced by hypervelocity impact of projectile on bumper[J]. Chinese Journal of High Pressure Physics, 2004,18(1):47-52. (in Chinese) [77] 马兆侠, 黄洁, 谢爱民, 等. 碎片云的产生、运动及碎片分布特性研究[C]∥第五届全国空间碎片专题研讨会论文集. 烟台:中国国家航天局,2009:454-462. MA Zhao-xia, HUANG Jie, XIE Ai-min, et al. Research on the formation, motion and debris distribution of debris cloud[C]∥Proceedings of the 5th National Symposium on Space Debris.Yantai:China National Space Administration,2009:454-462. (in Chinese) [78] 李毅, 柳森, 陈鸿, 等. 并行SPH仿真软件PTS的开发和应用[C]∥第二届全国超高速碰撞会议论文集. 北京:北京卫星环境工程研究所,2016:135-141. LI Yi, LIU Sen, CHEN Hong, et al. The development and application of PTS: a parallel SPH simulation software[C]∥Proceedings of the 2nd National Conference on Hypervelocity Impact. Beijing: Beijing Institute of Satellite Environmental Engineering,2016:135-141. (in Chinese) [79] Povarnitsyn M E, Khishchenko K V, Levashov P R. Hypervelocity impact modeling with different equations of state[J]. International Journal of Impact Engineering,2006,33(1):625-633. [80] 李宝宝, 汤文辉, 冉宪文. 两种物态方程在超高速碰撞数值模拟中的比较[J]. 航天器环境工程, 2010,27(5):576-580. LI Bao-bao, TANG Wen-hui, RAN Xian-wen. Comparison of two kinds of equation of state in numerical simulation of hypervelocity impact[J]. Spacecraft Environment Engineering,2010,27(5): 576-580.(in Chinese) [81] 邸德宁, 陈小伟. 碎片云SPH方法数值模拟中材料失效模型研究[J]. 爆炸与冲击, 2018, 38(5):948-956. DI De-ning, CHEN Xiao-wei. Study on material failure models in sph simulation of debris cloud[J]. Explosion and Shock Waves, 2018, 38(5):948-956.(in Chinese) [82] Zhang C B, Di D N, Chen X W. Study on debris clouds motion characteristics of cylindrical projectile hypervelocity impacting with thin plate[C]∥Proceedings of the 2nd International Conference on Impact Loading of Structures and Materials. Xi'an: The International Society of Impact Engineering, 2018. [83] 张永强, 管公顺, 张伟, 等. 球形弹丸正撞击薄板防护屏碎片云特性研究[J]. 爆炸与冲击, 2007,21(6):546-552. ZHANG Yong-qiang, GUAN Gong-shun, ZHANG Wei, et al. Characteristics of debris cloud produced by normal impact of spherical projectile on thin plate shield[J]. Explosion and Shock Waves, 2007,21(6):546-552. (in Chinese) [84] Grady D E. Local inertial effects in dynamic fragmentation[J]. Journal of Applied Physics, 1982, 53(1):322-325. [85] Grady D E. The spall strength of condensed matter[J]. Journal of Mechanics and Physics of Solids, 1988, 36(3):353-384. [86] Yew C H, Grady D E, Lawrence R J. A simple model for debris clouds produced by hypervelocity particle impact[J]. International Journal of Impact Engineering, 1993, 14(1):851-862. [87] Century Dynamics, Inc.. AUTODYN user manual, version 6.1[M].Concord, CA, US:Century Dynamics, Inc, 2005:164. [88] Mott N F. Fragmentation of shell cases[J]. Proceedings of the Royal Society of London A,1947,189(1018):300-308. [89] Akahoshi Y, Nakamura T. Construction of mass, three-dimensional and velocity distribution for the second debris clouds[J]. International Journal of Impact Engineering,2001,26(1):1-11. [90] Higashide M, Koura T, Akahoshi Y, et al. Debris cloud distributions at oblique impacts[J]. International Journal of Impact Engineering, 2008,35(12):1573-1577. [91] Grady D E, Kipp M E. Geometric statistics and dynamic fragmentation[J]. Journal of Applied Physics,1985,58(3):1210-1222. [92] Nishida M, Kato H, Hayashi K, et al.Ejecta size distribution resulting from hypervelocity impactof spherical projectiles on CFRP laminates[J]. Procedia Engineering,2013,58:533-542. [93] Liou J C,Johnson N L, Krisko P H, et al. The new NASA orbital debris breakup model[M]∥Green S F, Williams I P, McDonnell J A M,et al. Dustin the Solar System and Other Planetary Systems.Oxford, UK: Elsevier Science Ltd., 2002:363-367. [94] 迟润强. 弹丸超高速撞击薄板碎片云建模研究[D].哈尔滨:哈尔滨工业大学,2010. CHI Run-qiang. Research and modeling of debris cloud produced by hypervelocity impact of projectile with thin plate[D]. Harbin:Harbin Institute of Technology, 2010. (in Chinese) [95] 何茂坚. 球形弹丸超高速正撞击薄铝板碎片云特性研究[D]. 哈尔滨:哈尔滨工业大学,2007:33-42. HE Mao-jian. Characteristics of debris cloud produced by normal hypervelocity impact of spherical projectile with thin aluminum plate[D].Harbin: Harbin Institute of Technology,2007:33-42. (in Chinese) [96] 柳森, 李毅, 黄洁, 等. 弹丸超高速撞击单层和多层板结构的碎片特征研究[J]. 宇航学报, 2010, 31(6):1673-1678. LIU Sen, LI Yi, HUANG Jie, et al.Debris cloud characteristics of mono- and multi-plates under hypervelocity impact[J]. Journal of Astronautics, 2010, 31(6):1673-1678. (in Chinese) [97] Benz W, Asphaug E. Simulations of brittle solids using smoothed particle hydrodynamics[J]. Computer Physics Communications, 1995,87:253-265. [98] 徐金中, 汤文辉, 徐志宏. 超高速碰撞碎片云特征的SPH方法数值分析[J]. 高压物理学报, 2008,22(4):377-383. XU Jin-zhong, TANG Wen-hui, XU Zhi-hong. Numerical analysis of the characteristics of debris clouds produced by hypervelocity impacts using SPH method[J]. Chinese Journal of High Pressure Physics,2008,22(4):377-383. (in Chinese) [99] 徐金中. 基于SPH方法的空间碎片超高速碰撞特性及其防护结构设计研究[D]. 长沙:国防科学技术大学, 2008:66-69. XU Jin-zhong. Research on the characteristics of debris clouds produced by hypervelocity impacts of space debris and the design of the shielding structure based on SPH method[D]. Changsha:National University of Defense Technology, 2008:66-69. (in Chinese) [100] Zhang X T, Jia G H, Huang H. Fragment identification and statistics method of hypervelocity impact SPH simulation[J]. Chinese Journal of Aeronautics,2011,24(1):18-24. [101] Liang S C, Li Y, Chen H, et al. Research on the technique of identifying debris and obtaining characteristic parameters of large-scale 3D point set[J]. Procedia Engineering, 2013, 56(8): 526-532. [102] 张庆明. LY-12铝台金熔化的初始碰撞速度[J]. 北京理工大学学报, 2000,20(1): 427-430. ZHANG Qing-ming.Critical velocity resulting in melting of LY-12 aluminum alloy subjected to hypervelocity impact[J]. Transactions of Beijing Institute of Technology,2000,20(1): 427-430. (in Chinese) [103] 张永强, 陶彦辉, 蔡进涛, 等. 中低密度材料飞片超高速撞击铝防护结构实验研究[J]. 兵工学报,2013,34(8):981-985. ZHANG Yong-qiang, TAO Yan-hui, CAI Jin-tao, et al. Experimental research on hypervelocity impact of middle and low density material flyers on aluminum shield structure[J]. Acta Armamentarii,2013,34(8):981-985. (in Chinese) [104] 董士伟, 冷雪, 李宝宝, 等. 温度和相变效应对超高速碰撞数值模拟中碎片云质量特性的影响[J]. 兵器材料科学与工程, 2014,37(6):59-62. DONG Shi-wei,LENG Xue,LI Bao-bao, et al. Effect of temperature and phase-change on mass characters of debris clouds in numerical simulation of hypervelocity impacts[J]. Ordnance Material Science and Engineering,2014,37(6):59-62. (in Chinese) [105] Ward A J, Nance R P, Cogar J R,et al.Shock physics analysis to support optical signature prediction in hypervelocity impacts[J]. Procedia Engineering, 2013,58:634-641. [106] Mihaly J M,Tandy J D, Rosakis A J,et al.Pressure-dependent, infrared-emitting phenomenon in hypervelocity impact[J]. Journal of Applied Mechanics, 2015,82(1): 011004. [107] Rudolph M. Review of radio frequency emission from hypervelocity impactplasmas[J]. Procedia Engineering, 2013,58(1):409-417. [108] 刘志祥, 张庆明. 铝超高速碰撞产生等离子体相变潜热的理论研究[J]. 兵工学报, 2014,35(增刊2):347-352. LIU Zhi-xiang,ZHANG Qing-ming. Theoretical study of plasma latent heat of aluminum during hypervelocity impact[J]. Acta Armamentarii, 2014,35(S2):347-352. (in Chinese) [109] Li J Q, Song W D, Ning J G. A Preliminary study of the characteristics of an impact-generated plasma[J]. Physica Scripta, 2013,87(5): 055501. [110] 宁建国, 栗建桥, 宋卫东. 超高速碰撞产生等离子体的毁伤特性研究[J]. 力学学报, 2014,46(6):853-861. NING Jian-guo, LI Jian-qiao, SONG Wei-dong.Investigation of plasma damage properties generated by hypervelocity impact[J]. Chinese Journal of Theoretical and Applied Mechanics,2014,46(6):853-861. (in Chinese) [111] 唐恩凌, 张庆明, 相升海, 等. 超高速碰撞产生等离子体电磁特性的研究进展[J]. 强激光与粒子束,2011,23(4):853-858. TANG En-ling, ZHANG Qing-ming, XIANG Sheng-hai, et al. Research progress on electromagnetic characteristics of plasma generated by hypervelocity impacts[J]. High Power Laser and Particle Beams,2011,23(4):853-858. (in Chinese) [112] Ma Z X, Huang J, Shi A H, et al.Analysis technique for ejecta cloud temperature using atomic spectrum[J]. International Journal of Impact Engineering, 2016,91:25-33. [113] 马兆侠, 黄洁, 石安华, 等. 铝球超高速撞击铝板反溅碎片云团辐射特性研究[J]. 实验流体力学, 2014,28(2):90-94. MA Zhao-xia, HUANG Jie, SHI An-hua, et al. Study on radiation characteristics of ricochet debris cloud from aluminum plate subjected to hypervelocity impacts by aluminum projectile[J]. Journal of Experiments in Fluid Mechanics,2014,28(2):90-94. (in Chinese) [114] Ma Z X, Huang J, Shi A H, et al.The analysis technique for ejecta cloud temperature based on atomicspectrum[J].Procedia Engineering, 2015,103:357-364. [115] Heunoske D, Schimmerohn M, Osterholz J, et al.Time-resolved emission spectroscopy of impact plasma[J]. Procedia Engineering, 2013,58:624-633. [116] Radhakrishnan G. Time-resolved spectroscopy of plasma flash from hypervelocity impact on DebriSat[J]. Procedia Engineering, 2015,103:507-514. [117] Schonberg W P. A first-principles based model characterizing the debris cloud created in a hypervelocity impact[C]∥Space Programs & Technologies Conference & Exhibit. Huntsville,AL,US: AIAA, 1994. [118] Piekutowski A J. A method of estimating the state of the material in an all-aluminum debris cloud[C]∥Space Programs & Technologies Conference & Exhibit.Huntsville,AL,US: AIAA,1994. [119] Schmidt R M, Housenf K R, Piekutowski A J, et al. Cadmium simulation of orbital-debris shield performance to scaled velocities of 18 km/s[J]. Journal of Spacecraft and Rockets, 1994,31(5): 866-877. [120] Quintana S N, Crawford D A, Schultz P H. Analysis of impact melt and vapor production in CTH for planetary applications[J]. Procedia Engineering, 2015,103:499-506. [121] Holian K S, Burkett M W. Sensitivity of hypervelocity impact simulations to equation of state[J]. International Journal of Impact Engineering, 1987,5(1):333-341. [122] 唐蜜. 基于欧拉方法的超高速撞击程序研制及碎片云相分布数值模拟[D]. 绵阳:中国工程物理研究院,2015:62-81. TANG Mi. Development of hypervelocity impact codes based on Euler method and numerical study of the phase distribution in debris cloud[D]. Mianyang:China Academy of Engineering Physics,2015:62-81. (in Chinese) [123] 唐蜜, 刘仓理, 李平, 等. 超高速撞击产生碎片云相分布数值模拟[J]. 强激光与粒子束, 2012,24(9):2203-2206. TANG Mi, LIU Cang-li, LI Ping, et al. Numerical simulation of phase distribution of debris cloud generated by hypervelocity impact[J]. High Power Laser and Particle Beams, 2012,24(9): 2203-2206. (in Chinese) [124] Swift H F, Bamford R, Chen R. Designing space vehicle shields for meteoroid protection: a new analysis[J]. Advanced in Space Research, 1983,2(12):219-234. [125] Swift H F. Hypervelocity impact mechanics[M]∥Kukas J H, Nicholas T, Swift H F, et al. Impact Dynamics. NY, US: John Wiley & Sons,1982. [126] Herrmannt W, Wilbeck J S. Review of hypervelocity penetration theories[J]. International Journal of Impact Engineering,1987,5(1):307-322. [127] 安凯. 碎片云靶板分布及其在模型验证中的应用[J]. 系统工程与电子技术,2014,36(1):38-42. AN Kai. Distribution of debris cloud in impacted sheet and its application in model validation[J]. Systems Engineering and Electronics,2014,36(1):38-42.(in Chinese) [128] Nebolsine P, Gelb A, Legner H H, et al.Simple model for the debris velocity and distribution due to a catastrophic impact[J]. International Journal of Man-Machine Studies, 1983, 19(1):105-116. [129] Schonberg W P, Mohamed E. Analytical hole diameter and crack length models formulti-wall systems under hypervelocity projectile impact[J]. International Journal of Impact Engineering, 1999,23(1):835-846. [130] 张永, 李明, 韩增尧. 弹丸正撞击Whipple防护结构后墙的撞击载荷分析[J]. 航天器工程, 2008,17(6):79-83. ZHANG Yong, LI Ming, HAN Zeng-yao. Analysis of impact load applied on rear wall of Whipple shield under projectile normal hypervelocity impact[J]. Spacecraft Engineering,2008,17(6): 79-83. (in Chinese) [131] Corvonato E, Destefanis R, Faraud M. Integral model for the description of the debris cloud structure and impact[J]. International Journal of Impact Engineering,2001,26(1):115-128. [132] 蒋彩霞. 超高速撞击碎片云损伤建模[D].哈尔滨:哈尔滨工业大学, 2007:37-47. JIANG Cai-xia. Damage modeling of debris cloud produced by hypervelocity impact[D]. Harbin:Harbin Institute of Technology, 2007:37-47. (in Chinese) [133] Schafer F K. An engineering fragmentation model for the impact of spherical projectiles on thin metallic plates[J]. International Journal of Impact Engineering, 2006,33(1):745-762. [134] 郑建东, 龚自正, 席爽, 等. 基于弹丸最大碎片理论的碎片云模型[J]. 航天器环境工程, 2012,29(4):397-400. ZHENG Jian-dong, GONG Zi-zheng, XI Shuang, et al.A new debris cloud model based on the largest fragment theory[J]. Spacecraft Environment Engineering,2012,29(4):397-400. (in Chinese) [135] Zhang Q M, Long R R, Huang F L,et al. A model for debris clouds produced by impact of hypervelocity projectiles on multiplate structures[J]. Applied Physics Letters, 2008,93(21): 211905. [136] Wang Q T, Zhang Q M, Huang F L, et al. An analytical model for the motion of debris clouds induced by hypervelocity impact projectiles with different shapes on multi-plate structures[J]. International Journal of Impact Engineering, 2014,74:157-164. [137] Bless S. Bumper debris cloud structure estimated by shock calculation[J]. Journal de Physique IV Colloque,1991,1(C3):903-908. [138] Elliot L A. Shock fronts in two-dimensional flow[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,1962, 267(1331):558-565. [139] 龙仁荣, 张庆明. 超高速弹丸碰撞薄板产生碎片云的运动模型分析[J]. 北京理工大学学报, 2009,29(3):193-196. LONG Ren-rong, ZHANG Qing-ming. Dynamic model for debris clouds produced from impacts of hypervelocity projectiles with thin sheets[J]. Transactions of Beijing Institute of Technology,2009,29(3):193-196. (in Chinese) [140] Huang J, Ma Z X, Ren L S, et al. A new engineering model of debris cloud produced by hypervelocity impact[J]. International Journal of Impact Engineering, 2013,56:32-39. [141] Cour-Palais B J. Meteoroid protection by multiwall structures[C]∥AIAA Hypervelocity Impact Conference. Washington DC, US:AIAA,1969. [142] Christiansen E L, Kerr J H. Ballistic limit equations for spacecraft shielding[J]. International Journal of Impact Engineering, 2001,26(1):93-104. [143] Reimerdes H G, Nolke D, Schafer F. Modified Cour-Palais/Christiansen damage equations for double-wall structures[J]. International Journal of Impact Engineering, 2006,33(1):645-654. [144] Ryan S, Thaler S. Artificial neural networks for characterisingWhipple shield performance[J]. International Journal of Impact Engineering, 2013,56:61-70. [145] 黄鑫, 凌中, 刘宗德, 等. 梯度复合Whipple防护结构的超高速撞击实验[J]. 爆炸与冲击,2013(增刊):92-98. HUANG Xin, LING Zhong, LIU Zong-de, et al. Hypervelocity impact experiments on new gradient Whipple shield structure[J]. Explosion and Shock Waves,2013(S):92-98. (in Chinese) [146] Klavzar A, Chiroli M, Jung A, et al.Protective performance of hybrid metal foams as MMOD shields[J]. Procedia Engineering,2015,103:294-301. [147] Higashide M, Kusano T, Takayanagi Y, et al.Comparison of aluminum alloy and CFRP bumpers for space debris protection[J]. Procedia Engineering,2015,103:189-196. [148] 杨继运, 徐坤博, 简亚彬. 低温下Whipple防护结构超高速撞击效应研究[J]. 航天器环境工程, 2011,28(4):318-322. YANG Ji-yun, XU Kun-bo, JIAN Ya-bin, et al. The effects of hypervelocity impact on Whipple shield at cryogenic temperatures[J]. Spacecraft Environment Engineering,2011,28(4):318-322. (in Chinese) [149] Nishida M, Hayashi K, Nakagawa J, et al.Influence of temperature on crater and ejecta size following hypervelocity impact of aluminum alloy spheres on thick aluminum alloy targets[J]. International Journal of Impact Engineering, 2012,42:37-47. [150] 李斌. 轻质脆性弹丸作用下的防护结构超高速撞击特性研究[D].哈尔滨:哈尔滨工业大学, 2010:44-48. LI Bin. The research on characteristics of shield structure under light brittle projectile hypervelocity impact[D]. Harbin: Harbin Institute of Technology,2010:44-48. (in Chinese) [151] 孙英超. 微流星体超高速撞击航天器损伤特性研究[D].哈尔滨:哈尔滨工业大学, 2009. SUN Ying-chao. Damage characteristics of micro-meteoroid hypervelocity impacting on the spacecraft[D]. Harbin:Harbin Institute of Technology,2009. (in Chinese) [152] 单立, 郑世贵, 闫军. 冰粒超高速撞击蜂窝板的数值模拟研究[J]. 实验流体力学, 2014,28(3):98-103. SHAN Li, ZHENG Shi-gui, YAN Jun. Numerical simulatio |
[1] | 周晟, 张甲浩, 余庆波. 金属基活性破片侵彻间隔铝靶作用行为[J]. 兵工学报, 2023, 44(8): 2263-2272. |
[2] | 郑克勤, 张庆明, 龙仁荣, 薛一江, 龚自正, 武强, 张品亮, 宋光明. 超高速撞击波阻抗梯度材料形成的碎片云相变特性[J]. 兵工学报, 2021, 42(4): 773-780. |
[3] | 余庆波, 徐峰悦, 王勤智, 金学科, 王海福. 模拟卫星结构爆炸解体碎片分布特性[J]. 兵工学报, 2014, 35(7): 1072-1076. |
[4] | 张永强,陶彦辉,蔡进涛,宋振飞,谭福利,赵剑衡. 中低密度材料飞片超高速撞击铝防护结构实验研究[J]. 兵工学报, 2013, 34(8): 981-985. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||