[1] HANCHAK S J, FORRESTAL M J, YOUNG E R, et al. Perforation of concrete slabs with 48 MPa (7 ksi) and 140 MPa (20 ksi) unconfined compressive strengths[J]. International Journal of Impact Engineering, 1992, 12(1):1-7. [2] FREW D J, HANCHAK S J, GREEN M L, et al. Penetration of concrete targets with ogive-nose steel rods[J]. International Journal of Impact Engineering, 1998, 21(6):489-497. [3] DANCYGIER A N, YANKELEVSKY D Z, JAEGERMANN C. Response of high performance concrete plates to impact of non-deforming projectiles[J]. International Journal of Impact Engineering, 2007, 34(11):1768-1779. [4] DANCYGIER A N. Rear face damage of normal and high-strength concrete elements caused by hard projectile impact[J]. ACI Structural Journal, 1998, 95(3):291-304. [5] DANCYGIER A N, YANKELEVSKY D Z. High strength concrete response to hard projectile impact[J]. International Journal of Impact Engineering, 1996, 18(6):583-599. [6] WU H, FANG Q, CHEN X W, et al. Projectile penetration of ultra-high performance cement based composites at 510~1 320 m/s[J]. Construction & Building Materials, 2015, 74:188-200. [7] 胡瑞, 汪剑辉, 王天运,等. 高含量混杂钢纤维高强混凝土抗侵彻性能试验研究[J]. 混凝土, 2013(10):101-103. HU R, WANG J H, WANG T Y, et al. Experimental research on anti-penetration performance of high volume fraction hybrid steel fiber high strength reinforced concrete[J]. Concrete, 2013(10):101-103.(in Chinese) [8] 宫俊, 吴昊, 方秦, 等. 刚玉骨料超高性能水泥基材料抗侵彻试验和细观数值模拟[J]. 振动与冲击, 2017, 36(1):55-63.
GONG J, WU H, FANG Q, et al. Test and mesoscale numerical simulation for corundum-aggregate ultra-high performance cementitious composites against projectile penetration[J]. Journal of Vibration and Shock, 2017, 36(1):55-63.(in Chinese) [9] 武海军, 黄风雷, 王一楠, 等. 高速侵彻混凝土弹体头部侵蚀终点效应实验研究[J]. 兵工学报, 2012, 33(1):48-55. WU H J, HUANG F L, WANG Y N, et al. Experimental investigation on projectile nose eroding effect of high-velocity penetration into concrete[J]. Acta Armamentarii, 2012, 33(1):48-55.(in Chinese)
[10] 王一楠. 动能弹体高速侵彻混凝土机理研究[D]. 北京:北京理工大学, 2009. WANG Y N. The mechanism of high-speed kinetic energy projectile penetrating into concrete[D]. Beijing: Beijing Institute of Technology, 2009. (in Chinese) [11] 闪雨. 弹体非正侵彻混凝土侵蚀与运动的研究[D]. 北京:北京理工大学, 2014. SHAN Y. Investigation on the erosion and motion of projectile non-normal penetrating into concrete[D]. Beijing: Beijing Institute of Technology, 2014.(in Chinese) [12] YOUNG C W. Equations for predicting earth penetration by projectiles: SAND88-0013[R]. Albuguergue, NM, US:Sandia National Laboratories, 1988. [13] FORRESTAL M J, FREW D J, Hanchak S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles [J]. International Journal of Impact Engineering, 1996, 18(5): 465-476. [14] FREW D J, HANCHAK S J, GREEN M L, et al. Penetration of concrete targets with ogive-nose steel rods[J]. International Journal of Impact Engineering, 1998, 21(6):489-497. [15] CUI C, SHEIKH S A. Experimental study of normal- and high-strength concrete confined with fiber-reinforced polymers[J]. Journal of Composites for Construction, 2010, 14(5):553-561. [16] O'NEIL E F, NEELEY B D, CARGILE J D. Tensile properties of very-high-strength concrete for penetration-resistant structures[J]. Shock & Vibration, 2014, 6(5):237-245. [17] 钱飞. 高速侵彻混凝土弹体的质量侵蚀机理研究[D]. 北京:北京理工大学, 2015. QIAN F. Investigation on the mechanism of mass erosion of the high-speed projectile penetrating into concrete[D]. Beijing: Beijing Institute of Technology, 2015. (in Chinese)
第40卷 第2期2019 年2月兵工学报ACTA ARMAMENTARIIVol.40No.2Feb.2019
|