欢迎访问《兵工学报》官方网站,今天是

兵工学报

• •    下一篇

多级冲击与爆燃耦合作用下活性内芯侵爆结构壳体断裂机理

向镜安1,王海福1,刘澳昕1,闫月光1,杨欣雨2,葛超1*()   

  1. ( 1.爆炸科学与安全防护全国重点实验室,北京理工大学,北京 100081;2. 96962部队,北京 102206)
  • 收稿日期:2025-04-14 修回日期:2025-06-18
  • 通讯作者: *邮箱:gechao@bit.edu.cn
  • 基金资助:
    国家自然科学基金项目(12302460); 爆炸科学与安全防护全国重点实验室基金项目(YBKT24-02)

Fracture Mechanism on Shell of Reactive Materials Filled Structure Subjected to Multiple Impact and Internal Deflagration Loadings

XIANG Jing’an1,WANG Haifu1,LIU Aoxin1,YAN Yueguang1,YANG Xinyu2, GE Chao1*()   

  1. (1. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081;2. 96962 Unit of the PLA, Beijing 102206)
  • Received:2025-04-14 Revised:2025-06-18
  • Supported by:
    National Natural Science Foundation of China(12302460); State Key Laboratory of Explosion Science and Safety Protection(YBKT24-02)

摘要: 活性内芯侵爆结构作用多层目标多次引爆、逐层断裂、分域释能,其独特的逐层释能特性受壳体断裂行为影响显著。针对活性内芯侵爆结构多级冲击/爆燃作用下壳体断裂行为与失效机理,建立多级冲击/爆燃耦合作用下壳体应力分布模型,开展活性内芯侵爆结构侵彻双层间隔靶实验。实验后回收侵爆结构破片并对不同部位典型断口进行宏微观分析。研究结果表明:在冲击/爆燃作用下壳体轴向呈现独特应力转向效应,即壳体由承受冲击压应力转变为承受拉伸应力并发生拉伸断裂失效;在圆柱段呈现爆燃压力主导的周向断裂,形成多块大质量破片;不同部位回收破片扫描电子显微镜图像与断裂形貌验证了侵爆结构壳体失效与断裂受两种载荷影响,冲击引发轴向失效主导断裂长度,爆燃主导诱发周向失效造成壳体解体;内外面积比Sin/Sout显著影响侵爆结构抵抗周向失效的能力,初始碰撞速度与爆燃压力对断裂长度影响呈现相反趋势。

关键词: 活性内芯侵爆结构, 活性材料, 断裂行为, 多层结构靶, 内爆压力

Abstract: The reactive materials filled structure exhibits unique characteristics of multiple deflagrations, layer-by-layer fracturing, and spatially distributed energy release when penetrating multi-layered plates, which relies on the fracture behavior of the penetration structure shell. To reveal the fracture mechanism of the reactive materials filled structure subjected to multiple impacts, the stress distribution model describing the shell subjected to the impact and internal deflagration loadings was developed, and the ballistic experiment of reactive materials filled structure on double-layered plates was performed. The theoretical analysis validated by the recovered fragments after the experiment indicating a novel stress reverse effect in axial stress distribution when subjected to the impact and internal deflagration loadings, which means the axial stress converts from compressive to tensile stress and shell fractures when reaches the tensile stress limit. The circumferential failure dominated by internal deflagration loading leading the cylindrical segment fractured into multiple pieces. Fracture characteristics and SEM images of fracture surfaces from different regions verify the fracture mechanism of penetration structure shell associated with the influence of two loadings: axial failure dominated by impact loading induced the reduction in penetration structure length while circumferential failure dominated by internal deflagration loading leading to the disintegration of shell. Additionally, Interior and outer area ratio Sin/Sout influences the resistance to internal deflagration loading significantly, and the initial impact velocity and internal deflagration pressure exhibit opposite effects on the fracture length.

Key words: reactive materials filled structure, reactive materials, fracture behavior, multi-layered plates, internal deflagration

中图分类号: