[1] 叶文君, 汪涛, 鱼银虎. 氟聚物基含能反应材料研究进展[J]. 宇航材料工艺, 2012,42(6): 19-23. YE W J, WANG T, YU Y H. Research progress of fluoropolymer-matrix energetic reactive materials[J]. Aerospace Materials and Technology, 2012,42(6): 19-23.(in Chinese) [2] 李玲琴. 金属/氟聚物反应材料性能的研究[D]. 太原: 中北大学, 2015. LI L Q. Research on detonation properties of metal-fluride reactive materials[D]. Taiyuan: North University of China, 2015.(in Chinese) [3] KOCH E C. Metal-fluorocarbon based energetic materials[M].Weinheim, Germany:Wiley-VCH Gmbh & Co.KGa A, 2012:6-17. [4] 张先锋, 赵晓宁.多功能含能材料研究进展[J]. 含能材料, 2009, 17(6): 731-739. ZHANG X F, ZHAO X N. Review on multifunctional energetic structural materials[J]. Chinese Journal of Energetic Materials, 2009, 17(6): 731-739.(in Chinese) [5] 张昊, 王海福, 余庆波,等. 活性射流侵彻钢筋混凝土靶后效超压特性[J]. 兵工学报, 2019, 40(7): 1365-1372. ZHANG H, WANG H F, YU Q B, et al. Aftereffect overpressure of reactive jet perforating into reinforced concrete[J]. Acta Armamentarii, 2019, 40(7): 1365-1372.(in Chinese) [6] 苏成海, 王海福, 谢剑文,等. 活性射流作用混凝土靶侵彻与爆炸效应研究[J]. 兵工学报, 2019, 40(9): 1829-1835. SU C H, WANG H F, XIE J W, et al. Penetration and damage effects of reactive material jet against concrete target[J]. Acta Armamentarii , 2019, 40(9): 1829-1835. (in Chinese) [7] 吴家祥, 李裕春, 方向,等. Al粒径对Al-PTFE准静压反应和落锤撞击感度的影响[J]. 含能材料, 2018, 26(6): 524-529. WU J X, LI Y C, FANG X, et al. Effect of Al particle size on the quasi-compression reaction and drop hammer impact sensitivity of Al-PTFE[J]. Chinese Journal of Energetic Materials, 2018, 26(6): 524-529.(in Chinese) [8] 吴家祥, 方向, 李裕春,等. Al-Ni-PTFE反应材料的准静压力学响应与毁伤性能研究[J]. 火工品, 2019(1): 34-37. WU J X, FANG X, LI Y C, et al. Study on quasi-static compression mechanical response and damage performance of Al-Ni-PTFE reactive materials[J]. Initiators & Pyrotechnics, 2009(1) : 34-37.(in Chinese) [9] 任俊凯, 李裕春, 方向,等. PTFE/Al/MnO2复合材料制备及性能[J]. 工程塑料应用, 2018, 46(10): 35-38,43. REN J K, LI Y C, FANG X, et al. Preparation and performance of PTFE/Al/MnO2 composite[J]. Engineering Plastics Application, 2018, 46(10): 35-38,43.(in Chinese) [10] 黄骏逸, 方向, 李裕春,等. PTFE/Al/MoO3复合材料的力学和反应性能[J]. 材料工程, 2019, 47(7): 92-98. HUANG J Y, FANG X, LI Y C, et al. Mechanical and reactive properties of PTFE/Al/MoO3 composites[J]. Journal of Materials Engineering, 2019, 47(7): 92-98.(in Chinese) [11] 曾亮, 焦清介, 任慧,等. 纳米铝粉粒径对活性量及氧化层厚度的影响[J]. 火炸药学报, 2011, 34(4): 26-29. ZENG L, JIAO Q J, REN H, et al. Effect of particle size of nano-aluminum powder on oxide film thickness and active aluminum content[J]. Chinese Journal of Explosives & Propellants. 2011, 34(4): 26-29.(in Chinese) [12] HOBOSYAN M A, KIRAKOSYAN K G, KHARATYAN S L, et al. PTFE-Al2O3 reactive interaction at high heating rates[J]. Journal of Thermal Analysis and Calorimetry, 2015, 119(1): 245-251. [13] OSBORNE D T, PANTOYA M L. Effect of al particle size on the thermal degradation of Al/Teflon mixtures[J]. Combustion Science and Technology, 2007, 179(8): 1467-1480. [14] MULAMBA O, PANTOYA M L. Exothermic surface chemistry on aluminum particles promoting reactivity[J]. Applied Surface Science, 2014, 315: 90-94. [15] 刘璐, 任慧, 焦清介. 纳米镁粉对聚四氟乙烯热分解规律的影响[C]∥ 2014中国功能材料科技与产业高层论坛. 西安: 中国功能材料学会, 2014. LIU L, REN H, JIAO Q J. The effect of nanometer magnesium powder on the thermal decomposition of polytetrafluroethylene[C]∥Proceedings of China Functional Materials Technology and Industry Forum. Xi'an: China Instrument Functional Materials Society, 2014.(in Chinese) [16] 周禹男, 刘建忠, 王家皓,等. 铝颗粒氧化机理与燃烧理论研究进展[J]. 兵器材料科学与工程, 2017, 40(2): 122-128. ZHOU Y N, LIU J Z, WANG J H, et al. Progress in oxidation mechanism and combustion theory of aluminum particles[J]. Ordnance Material Science and Engineering, 2017, 40(2): 122-128. (in Chinese) [17] LWVITAS V I, PANTOYA M L, DIKICI B. Melt dispersion versus diffusive oxidation mechanism for aluminum nanoparticles: critical experiments and controlling parameters[J]. Applied Physics Letters, 2008, 92(1): 011921. [18] PANTOYA M L, DEAN S W. The influence of alumina passivation on nano-Al/Teflon reactions[J]. Thermochimica Acta, 2009, 493(1/2): 109-110. [19] STARINK M J. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods[J]. Thermochimica Acta, 2003, 404(1/2): 163-176. [20] KISSINGER H E. Variation of peak temperature with heating rate in differential thermal analysis[J]. Journal of Research of the National Bureau of Standards, 1956, 57(4): 217-221. [21] OZAWA T. Estimation of activation energy by isoconversion methods[J]. Thermochimica Acta, 1992, 203: 159-165. [22] FAN R H, L H L, SUN K N, et al. Kinetics of thermite reaction in Al-Fe2O3 system[J]. Thermochimica Acta, 2006, 440(2): 129-131.
|