欢迎访问《兵工学报》官方网站,今天是

兵工学报

• •    下一篇

基于改进蜣螂优化算法无人机三维航迹规划

纪录1,陈超1*() ,陈恒2   

  1. (1. 南京航空航天大学 航空学院, 江苏 南京 210016; 2.南京工业职业技术大学 交通工程学院, 江苏 南京 210023)
  • 收稿日期:2024-11-26 修回日期:2025-01-20
  • 通讯作者: *邮箱:chaochen@nuaa.edu.cn
  • 基金资助:
    国家自然科学基金项目(51575259);江苏省高校自然科学研究项目(22KJB570007)

Improved Dung Beetle Optimisation Algorithm Based UAV 3D Trajectory Planning

JI Lu1, CHEN Chao1*() , CHEN Chen2   

  1. (1. College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu, China; 2. School of Transportation Engineering, Nanjing Vocational University of Industry Technology, Nanjing 210023, Jiangsu, China)
  • Received:2024-11-26 Revised:2025-01-20

摘要: 针对无人机三维航迹规划识别威胁或者禁飞区域存在搜索盲点问题和提高全局航迹规划能力,传统的蜣螂智能优化算法具有良好的全局搜索能力,但其性能受到初始化参数设置的影响,会出现局部搜索出现盲点、种群之间不交流等问题,为此提出多策略改进型的蜣螂优化算法。采用新型混沌映射、新型柯西-洛伦兹游走策略、改进三角游走策略和新型柯西逆累积分布函数游走策略分别改进初始化参数、蜣螂滚球行为、小蜣螂觅食行为和蜣螂偷窃行为;采用改进纵横交叉策略对各个种群蜣螂进行交叉;通过多种策略改进提高了无人机识别威胁区域和全局航迹规划能力。研究结果表明了改进型蜣螂算法在无人机航迹规划的优越性,相比于传统蜣螂智能优化算法,改进优化算法总成本只有传统算法成本的57.88%,总成本降低35.59%;相较于沙猫群算法、粒子群算法、河马算法和灰狼算法总成本分别降低38.37%、38.80%、44.17%、41.80%。

关键词: 航迹规划, 蜣螂优化算法, 新型混沌映射, 新型柯西-洛伦兹游走策略, 新型柯西逆累积分布函数游走策略

Abstract: To address the problem of search blind spots in UAV 3D trajectory planning to identify threats or no-fly areas and to improve the global trajectory planning capability, the traditional dung beetle intelligent optimization algorithm has good global search capability, but its performance is affected by the initialization parameter settings, which can lead to problems such as blind spots in the local search, and non-communication between populations, etc. For this reason, a multi-strategy improved dung beetle optimization algorithm is proposed. The initialization parameters, dung beetle ball-rolling behavior, small dung beetle foraging behavior and dung beetle stealing behavior are improved by using a novel chaotic mapping, a novel Cauchy-Lorenz wandering strategy, an improved triangular wandering strategy, and a novel Cauchy's inverse cumulative distribution function wandering strategy, respectively; the dung beetles of each population are crossed by using an improved longitudinal and transversal crossover strategy; and the ability of the UAV to identify threat areas and the global trajectory planning is enhanced by the improvement of the multi-strategy. The results show the superiority of the improved dung beetle algorithm in UAV trajectory planning; compared with the traditional dung beetle intelligent optimization algorithm, the total cost of the improved optimization algorithm is only 57.88% of the cost of the traditional algorithm, and the total cost is reduced by 35.59%; compared with the total cost of the sand cat swarm algorithm, the particle swarm algorithm, the hippopotamus algorithm, and the gray wolf algorithm the total cost is reduced by 38.37%, 38.80%, 44.17%, respectively, 41.80%.

Key words: trajectory planning, dung beetle optimization algorithm, novel chaotic mapping, novel Cauchy-Lorenz wandering strategy, novel cauchy inverse cumulative distribution function wandering strategy

中图分类号: