欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (5): 240735-.doi: 10.12382/bgxb.2024.0735

• • 上一篇    

一种基于脑网络特征的水声目标识别算法

张家琦, 石章松, 徐慧慧*()   

  1. 海军工程大学, 湖北 武汉 430033
  • 收稿日期:2024-08-27 上线日期:2025-05-07
  • 通讯作者:
  • 基金资助:
    湖北省自然科学基金项目(2024AFB404)

An Underwater Acoustic Target Recognition Algorithm Based on Brain Network Features

ZHANG Jiaqi, SHI Zhangsong, XU Huihui*()   

  1. Naval University of Engineering, Wuhan 430033, Hubei, China
  • Received:2024-08-27 Online:2025-05-07

摘要:

针对声呐员在水声目标识别过程中脑力负荷大、无法保证长时间有效工作状态的问题,基于脑-机接口技术,提出一种基于脑网络特征的水声目标识别算法,用于辅助声呐员完成水下目标的快速识别。为了增强模型对大脑神经活动信息的提取,并降低大脑无关依赖性的干扰,利用格兰杰因果和转移熵理论重建脑网络特征提取算法,并将其用于水声目标分类模型的构建。设计视-听联合刺激范式模拟真实工作环境并进行实验数据采集,以完成水声目标分类模型的训练与验证。分析结果表明,新提出的脑网络特征算法可以更好地捕获神经活动中的依赖性信息,结合所设计的视-听联合刺激范式,完成了对基于脑网络特征的水声目标分类模型验证实验,最终识别准确率稳定在90%以上。

关键词: 脑-机接口, 水声目标识别, 脑电图, 脑网络, 支持向量机

Abstract:

In response to the problems of sonar operator having a heavy mental workload and the inability to ensure long-term effective working status in the process of underwater target recognition, a brain network feature-based underwater target recognition algorithm based on brain-computer interface (BCI) technology is proposed to assist sonar operators in achieving the rapid recognition of underwater targets. In order to enhance the extraction of brain neural activity information by the model and reduce the interference of brain irrelevant dependencies, the Granger causality (GC) and transfer entropy (TE) theories are used to reconstruct a brain network feature extraction algorithm, and a underwater acoustic target classification model is established by the proposed algorithm. A visual-auditory joint stimulation paradigm is designed for environmental simulation, and the experimental data is collected to complete the training and validation of the underwater acoustic target classification model. The analyzed results show that the proposed brain network feature algorithm can better capture the dependency information in neural activity. The validation of the underwater acoustic target classification model based on brain network features is verified by the visual-auditory joint stimulation paradigm, and the final recognition accuracy is over 90%.

Key words: brain-computer interface, underwater acoustic target recognition, electroencephalogram, brain network, support vector machine

中图分类号: