[1] |
GAO P X, YU T, ZHANG Y L, et al. Vibration analysis and control technologies of hydraulic pipeline system in aircraft: a review[J]. Chinese Journal of Aeronautics, 2021, 34(4): 83-114.
|
[2] |
权凌霄, 孙冰江, 赵劲松, 等. 航空弯曲液压管路流固耦合振动频响分析[J]. 西北工业大学学报, 2018, 36(3):487-495.
|
|
QUAN L X, SUN B J, ZHAO J S, et al. Frequency response analysis of fluid-structure interaction vibration in aircraft bending hydraulic pipe[J]. Journal of Northwestern Polytechnical University, 2018, 36(3):487-495. (in Chinese)
|
[3] |
GAO H B, GUO C H, QUAN L X, et al. Frequency domain analysis of fluid-structure interaction in aircraft hydraulic pipe with complex constraints[J]. Processes, 2022, 10(6): 1161.
|
[4] |
张怀亮, 陈婷, 潘文龙. 基础振动下液压管道主动减振研究[J]. 机械设计与研究, 2019, 35(4): 58-63.
|
|
ZHANG H L, CHEN T, PAN W L. Research on active damping of hydraulic pipelines under the basic vibration[J]. Machine Design and Research, 2019, 35(4): 58-63. (in Chinese)
|
[5] |
ZHANG J N, XIAO L, MAO X Y, et al. Fatigue life analysis of a slightly curved hydraulic pipe based on pairs theory[J]. Nonlinear Dynamics, 2023: 111:17843-17857.
|
[6] |
周知进, 丁一, 林家祥, 等. 卡箍对L形航空液压管道振动影响研究[J]. 机床与液压, 2021, 49(24): 37-40.
doi: 10.3969/j.issn.1001-3881.2021.24.007
|
|
ZHOU Z J, DING Y I, LIN J X, et al. Research on the influence of clamps on the vibration of L-shaped aviation hydraulic pipeline[J]. Machine Tool and Hydraulics, 2021, 49(24): 37-40. (in Chinese)
|
[7] |
MAO X Y, XIAO L, DING H, et al. Forced resonance of a slightly-curved hydraulic pipe fixed at two ends[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2022, 39(3): 271-279.
|
[8] |
FAN X, ZHU C A, MAO X Y, et al. Resonance regulation on a hydraulic pipe via boundary excitations[J]. International Journal of Mechanical Sciences, 2023, 252: 108375.
|
[9] |
母东杰, 李长春, 延皓, 等. 基于特征线理论的阀控液压管路瞬变过渡流数值分析[J]. 兵工学报, 2012, 33(12):1455-1460.
|
|
MU D J, LI C C, YAN H, et al. Characteristic based numerical analysis of transitional flow in servo controlled hydraulic pipelines[J]. Acta Armamentarii, 2012, 33(12): 1455-1460. (in Chinese)
|
[10] |
URBANOWICZ K, STOSIAK M, TOWARNICKI K, et al. Theoretical and experimental investigations of transient flow in oil-hydraulic small-diameter pipe system[J]. Engineering Failure Analysis, 2021, 128: 105607.
|
[11] |
GUO X M, CAO Y M, MA H, et al. Dynamic analysis of an L-shaped liquid-filled pipe with interval uncertainty[J]. International Journal of Mechanical Sciences, 2022, 217: 107040.
|
[12] |
刘伟, 刘永寿, 姜志峰, 等. 液压源管路系统随机压力脉动可靠性研究[J]. 振动与冲击, 2011, 30(6): 265-268.
|
|
LIU W, LIU Y S, JIANG Z F, et al. Pressure pulsation reliability analysis of hydraulic power pipelines[J]. Journal of Vibration and Shock, 2011, 30(6): 265-268. (in Chinese)
|
[13] |
赵静一, 朱明, 王启明, 等. FAST液压促动器液压系统管路可靠性增长试验研究[J]. 机械工程学报, 2019, 55(16): 197-204.
doi: 10.3901/JME.2019.16.197
|
|
ZHAO J Y, ZHU M, WANG Q M, et al. Reliability growth test study of five-hundred-meter aperture spherical radio telescope reflective surface hydraulic actuator[J]. Journal of Mechanical Engineering, 2019, 55(16): 197-204. (in Chinese)
doi: 10.3901/JME.2019.16.197
|
[14] |
GUO Q, LÜ T Q, LIU Y S, et al. Dynamic reliability and global sensitivity analysis for hydraulic pipe based on sparse grid integral method[J]. Journal of Pressure Vessel Technology, 2019, 141(6): 061701.
|
[15] |
ZHOU C C, ZHANG Z, LIU F C, et al. Sensitivity analysis for probabilistic anti-resonance design of aeronautical hydraulic pipelines[J]. Chinese Journal of Aeronautics, 2019, 32(4): 948-953.
|
[16] |
张天霄. 有限概率信息下液压管路的可靠性微分灵敏度分析[J]. 机械强度, 2021, 43(5):1082-1087.
|
|
ZHANG T X. Reliability differential sensitivity analysis of hydraulic pipeline under finite probability information[J]. Journal of Mechanical Strength, 2021, 43(5):1082-1087. (in Chinese)
|
[17] |
TIJSSELING A S. Exact solution of linear hyperbolic four-equation system in axial liquid-pipe vibration[J]. Journal of Fluids and Structures, 2003, 18(2): 179-196.
|
[18] |
杨林清, 秦本科, 薄涵亮. 结合部耦合的能量分析方法[J]. 清华大学学报(自然科学版), 2023, 63(5): 840-848.
|
|
YANG L Q, QIN B K, BO H L. Energy analysis method of junction coupling[J]. Journal of Tsinghua University (Science and Technology), 2023, 63(5): 840-848. (in Chinese)
|
[19] |
朱海波, 赵钢, 徐江. 飞机地面液压油泵源管路液压冲击研究[J]. 沈阳航空航天大学学报, 2014, 31(2):56-58.
|
|
ZHU H B, ZHAO G, XU J. Hydraulic impact studies of the aircraft ground hydraulic pump source pipelines[J]. Journal of Shenyang Aerospace University, 2014, 31(2): 56-58. (in Chinese)
|
[20] |
CHENG K, LU Z Z. Structural reliability analysis based on ensemble learning of surrogate models[J]. Structural Safety, 2020, 83: 101905.
|
[21] |
ZHOU J, LI J. IE-AK: a novel adaptive sampling strategy based on information entropy for Kriging in metamodel-based reliability analysis[J]. Reliability Engineering and System Safety, 2023, 229: 108824.
|
[22] |
ZHA C Y, SUN Z L, WANG J, et al. A general active-learning method for surrogate-based structural reliability analysis[J]. Structural Engineering and Mechanics, 2022, 83(2): 167-178.
|
[23] |
QIAN H M, WEI J, HUANG H Z. Structural fatigue reliability analysis based on active learning Kriging model[J]. International Journal of Fatigue, 2023, 172: 107639.
|
[24] |
XIAO N C, YUAN K, ZHOU C N. AdaptiveKriging-based efficient reliability method for structural systems with multiple failure modes and mixed variables[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 359: 112649.
|
[25] |
ECHARD B, GAYTON N, LEMAIRE M. AK-MCS: an active learning reliability method combining Kriging and Monte Carlo simulation[J]. Structural Safety, 2011, 33(2): 145-154.
|
[26] |
JIANG C, YAN Y F, WANG D P, et al. Global and local Kriging limit state approximation for time-dependent reliability-based design optimization through wrong-classification probability[J]. Reliability Engineering and System Safety, 2021, 208: 107431.
|
[27] |
URBANOWICZ K, BERGANT A, STOSIAK M, et al. Developments in analytical wall shear stress modelling for water hammer phenomena[J]. Journal of Sound and Vibration, 2023, 562: 117848.
|
[28] |
田灵飞. 某火炮自动供输弹机液压控制系统研究[D]. 南京: 南京理工大学, 2013.
|
|
TIAN L F. Research on the hydraulic control system of a self-propelled artillery automatic feed transfer mechanism[D]. Nanjing: Nanjing University of Science and Technology, 2013. (in Chinese)
|