[1] |
NEGRELLO F, STUART H S, CATALANO M G. Hands in the real world[J]. Frontiers in Robotics and AI, 2020, 6: 147.
doi: 10.3389/frobt.2019.00147
URL
|
[2] |
BILLARD A, KRAGIC D. Trends and challenges in robot manipulation[J]. Science, 2019, 364(6446): eaat8414.
doi: 10.1126/science.aat8414
URL
|
[3] |
王田苗, 郝雨飞, 杨兴帮, 等. 软体机器人:结构、驱动、传感与控制[J]. 机械工程学报, 2017, 53(13): 1-13.
doi: 10.3901/JME.2017.13.001
|
|
WANG T M, HAO Y F, YANG X B, et al. Soft robotics: structure, actuation, sensing and control[J]. Journal of Mechanical Engineering, 2017, 53(13): 1-13. (in Chinese)
|
[4] |
蔡世波, 陶志成, 万伟伟, 等. 机器人多指灵巧手的研究现状、趋势与挑战[J]. 机械工程学报, 2021, 57(15): 1-14.
doi: 10.3901/JME.2021.15.001
|
|
CAI S B, TAO Z C, WAN W W, et al. Multi-fingered dexterous hands: from simplicity to complexity and simplifying complex applications[J]. Journal of Mechanical Engineering, 2021, 57(15): 1-14. (in Chinese)
doi: 10.3901/JME.2021.15.001
|
[5] |
SHINTAKE J, CACUCCIOLO V, FLOREANO D, et al. Soft robotic grippers[J]. Advanced Materials, 2018, e1707035. DOI: 10.1002/adma.201707035.
|
[6] |
ARTHUR P S. A review of anthropomorphic robotic hand technology and data glove based control[D]. VA, US: Virginia Polytechnic Institute and State University, 2016.
|
[7] |
REBOLLO D R R, PONCE P, MOLINA A. From 3 fingers to 5 fingers dexterous hands[J]. Advanced Robotics, 2017, 31(2): 1-20.
doi: 10.1080/01691864.2016.1266119
URL
|
[8] |
HUGHES J, CULHA U, GIARDINA F, et al. Soft manipulators and grippers: a review[J]. Frontiers in Robotics and AI, 2016, 3: 69.
|
[9] |
张进华, 王韬, 洪军, 等. 软体机械手研究综述[J]. 机械工程学报, 2017, 53(13): 19-28.
doi: 10.3901/JME.2017.13.019
|
|
ZHANG J H, WANG T, HONG J, et al. Review of Soft-bodied Manipulator[J]. Journal of Mechanical Engineering, 2017, 53(13): 19-28. (in Chinese)
doi: 10.3901/JME.2017.13.019
|
[10] |
JIANG L, LIU Y, YANG D P, et al. A synthetic framework for evaluating and designing an anthropomorphic prosthetichand[J]. Journal of Bionic Engineering, 2018, 15(1): 69-82.
doi: 10.1007/s42235-017-0005-5
|
[11] |
Shadow Robot. https://www.shadowrobot.com[EB/OL]. 2023-11-14.
|
[12] |
KIM U, JUNG D, JEONG H, et al. Integrated linkage-driven dexterous anthropomorphic robotic hand[J]. Nature Communications, 2021, 12(1): 1-13.
doi: 10.1038/s41467-020-20314-w
|
[13] |
戴建生, 安伟, 王瑞钦, 等. 基于可重构虎克铰链副的仿人变胞手设计与分析[J]. 天津大学学报(自然科学与工程技术版), 2022, 55(3): 221-229.
|
|
DAI J S, AN W, WANG R Q, et al. Design and analysis of a humanoid metamorphic hand based on reconfigurable hooke joints[J]. Journal of Tianjin University(Science and Technology), 2022, 55(3):221-229. (in Chinese)
|
[14] |
马涛, 杨冬, 赵海文, 等. 一种新型欠驱动机械手爪的抓取分析和优化设计[J]. 机器人, 2020, 42(3): 354-364.
doi: 10.13973/j.cnki.robot.190412
|
|
MA T, YANG D, ZHAO H W, et al. Grasp analysis and optimal design of a new underactuated manipulator[J]. Robot, 2020, 42(3): 354-364. (in Chinese)
doi: 10.13973/j.cnki.robot.190412
|
[15] |
梁达尧, 张文增. 平夹自适应欠驱动手的参数优化与稳定性分析[J]. 机器人, 2017, 39(3): 282-291.
doi: 10.13973/j.cnki.robot.2017.0282
|
|
LIANG D Y, ZHANG W Z. Parameters optimization and stability analysis for a parallel and self-adaptive underactuated hand[J]. Robot, 2017, 39(3): 282-291. (in Chinese)
doi: 10.13973/j.cnki.robot.2017.0282
|
[16] |
CHEN W R, XIONG C H, WANG Y N. Analysis and synthesis of underactuated compliant mechanisms based on transmission properties of motion and force[J]. IEEE Transactions on Robotics, 2020, 36(3): 773-788.
doi: 10.1109/TRO.8860
URL
|
[17] |
DEIMEL R, BROCK O. A novel type of compliant and underactuated robotic hand for dexterous grasping[J]. The International Journal of Robotics Research, 2016, 35(1/2/3):161-185.
doi: 10.1177/0278364915592961
URL
|
[18] |
SRT软体机器人. http://www.softrobottech.com[EB/OL]. 2023-11-14.
|
|
SRT soft robot http://www.softrobottech.com[EB/OL]. 2023-11-14.(in Chinese)
|
[19] |
文力, 王贺升. 软体机器人研究展望: 结构、驱动与控制[J]. 机器人, 2018, 40(5): 577.
|
|
WEN L, WANG H S. Prospects for soft robotics research: structure, actuation, and control[J]. Robot, 2018, 40(5): 577. (in Chinese)
|
[20] |
LI C S, GU X Y, XIAO X, et al. Transcend anthropomorphic robotic grasping with modular antagonistic mechanisms and adhesive soft modulations[J]. IEEE Robotics and Automation Letters, 2019, 4(3): 2463-2470.
doi: 10.1109/LSP.2016.
URL
|
[21] |
HAM K B, HAN J H, PARK Y J. Soft gripper using variable stiffness mechanism and its application[J]. International Journal of Precision Engineering and Manufacturing, 2018, 19(4): 487-494.
doi: 10.1007/s12541-018-0059-2
|
[22] |
HAO Y F, WANG T M, XI F, et al. A variable stiffness soft robotic gripper with low-melting-point alloy[C]// Proceedings of the 36th Chinese Control Conference. Dalian, China: IEEE, 2017: 6781-6786.
|
[23] |
KAPPASSOV Z, CORRALES J, PERDEREAU V. Tactile sensing in dexterous robot hands-a review[J]. Robotics and Autonomous Systems, 2015, 74: 195-220.
doi: 10.1016/j.robot.2015.07.015
URL
|
[24] |
LIU H B, NGUYEN K C, PERDEREAU V, et al. Finger contact sensing and the application in dexterous hand manipulation[J]. Autonomous Robots, 2015, 39(1): 25-41.
doi: 10.1007/s10514-015-9425-4
URL
|
[25] |
ZÖLLER G, WALL V, BROCK O. Acoustic sensing for soft pneumatic actuators[C]// Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Madrid, Spain:IEEE, 2018: 6986-6991.
|
[26] |
KERR E, MCGINNITY T M, COLEMAN S. Material classification based on thermal properties-a robot and human evaluation[C]// Proceedings of IEEE International Conference on Robotics and Biomimetics. Shenzhen, China: IEEE, 2013: 1048-1053.
|
[27] |
HSIAO K, NANGERONI P, HUBER M, et al. Reactive grasping using optical proximity sensors[C]// Proceedings of IEEE International Conference on Robotics and Automation. Kobe, Japan: IEEE, 2009: 2098-2105.
|
[28] |
KOYAMA K, SUZUKI Y, MING A, et al. Integrated control of a multi-fingered hand and arm using proximity sensors on the fingertips[C]// Proceedings of IEEE International Conference on Robotics and Automation. Stockholm, Sweden: IEEE, 2016: 4282-4288.
|
[29] |
PHAM T, KYRIAZIS N, ARGYROS A A, et al. Hand-object contact force estimation from markerless visual tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(12): 2883-2896.
doi: 10.1109/TPAMI.2017.2759736
URL
|
[30] |
BUESCHER G, MEIER M, WALCK G, et al. Augmenting curved robot surfaces with soft tactile skin[C]// Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg, Germany: IEEE, 2015:1514-1519.
|
[31] |
SHIH B, DROTMAN D, CHRISTIANSON C, et al. Custom soft robotic gripper sensor skins for haptic object visualization[C]// Proceedings of IEEE/RSJ international conference on intelligent robots and systems. Vancouver, Canada: IEEE, 2017: 494-501.
|
[32] |
BICCHI A, SALISBURY J K, BROCK D L. Contact sensing from force measurements[J]. The International Journal of Robotics Research, 1993, 12(3): 249-262.
doi: 10.1177/027836499301200304
URL
|
[33] |
SOMMER N, BILLARD A. Multi-contact haptic exploration and grasping with tactile sensors[J]. Robotics and Autonomous Systems, 2016, 85: 48-61.
doi: 10.1016/j.robot.2016.08.007
URL
|
[34] |
MURRAY R M, LI Z, SASTRY S S. A mathematical introduction to robotic manipulation[M]. Boca Raton, FL, US: CRC Press, 2017.
|
[35] |
DEL PRETE A, DENEI S, NATALE L, et al. Skin spatial calibration using force/torque measurements[C]// Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco, CA, US: IEEE, 2011: 3694-3700.
|
[36] |
YUAN W Z, DONG S Y, ADELSON E H. Gelsight: high-resolution robot tactile sensors for estimating geometry and force[J]. Sensors, 2017, 17(12): 2762.
doi: 10.3390/s17122762
URL
|
[37] |
LI R, PLATT R, YUAN W Z, et al. Localization and manipulation of small parts using gelsight tactile sensing[C]// Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago, IL, US: IEEE, 2014: 3988-3993.
|
[38] |
JAMALI N, MAGGIALI M, GIOVANNINI F, et al. A new design of a fingertip for the iCub hand[C]// Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg, Germany: IEEE, 2015: 2705-2710.
|
[39] |
YAMAGUCHI A, ATKESON C G. Combining finger vision and optical tactile sensing: reducing and handling errors while cutting vegetables[C]// Proceedings of the 2016 IEEE-RAS 16th International Conference on Humanoid Robots. Cancun, Mexico: IEEE, 2016: 1045-1051.
|
[40] |
CIRILLO A, CIRILLO P, DE MARIA G, et al. Modeling and calibration of a tactile sensor for robust grasping[J]. IFAC-PapersOnLine, 2017, 50(1): 6843-6850.
doi: 10.1016/j.ifacol.2017.08.1205
URL
|
[41] |
SU Z, HAUSMAN K, CHEBOTAR Y, et al. Force estimation and slip detection/classification for grip control using a biomimetic tactile sensor[C]// Proceedings of the IEEE-RAS 15th International Conference on Humanoid Robots. Seoul, Korea: IEEE, 2015: 297-303.
|
[42] |
BHATTACHARJEE T, JAIN A, VAISH S, et al. Tactile sensing over articulated joints with stretchable sensors[C]// Proceedings of 2013 World Haptics Conference. Daejeon, Korea: IEEE, 2013: 103-108.
|
[43] |
ROMANO J M, HSIAO K, NIEMEYER G, et al. Human-inspired robotic grasp control with tactile sensing[J]. IEEE Transactions on Robotics, 2011, 27(6): 1067-1079.
doi: 10.1109/TRO.2011.2162271
URL
|
[44] |
CUTKOSKY M R, HYDE J M. Manipulation control with dynamic tactile sensing[C]// Proceedings of the 6th International Symposium on Robotics Research. Hidden Valley, Pennsylvania: IFRR, 1993: 143-153.
|
[45] |
HEYNEMAN B, CUTKOSKY M R. Slip classification for dynamic tactile array sensors[J]. The International Journal of Robotics Research, 2016, 35(4): 404-421.
doi: 10.1177/0278364914564703
URL
|
[46] |
BACKUS S B, DOLLAR A M. Robust resonant frequency-based contact detection with applications in robotic reaching and grasping[J]. IEEE/ASME Transactions on Mechatronics, 2013, 19(5): 1552-1561.
doi: 10.1109/TMECH.3516
URL
|
[47] |
HOMBERG B S, KATZSCHMANN R K, DOGAR M R, et al. Robust proprioceptive grasping with a soft robot hand[J]. Autonomous Robots, 2019, 43(3): 681-696.
doi: 10.1007/s10514-018-9754-1
|
[48] |
LIN M A, THOMASSON R, URIBE G, et al. Exploratory hand: Leveraging safe contact to facilitate manipulation in cluttered spaces[J]. IEEE Robotics and Automation Letters, 2021, 6(3): 5159-5166.
doi: 10.1109/LRA.2021.3068941
URL
|
[49] |
SHAN X, BIRGLEN L. Modeling and analysis of soft robotic fingers using the fin ray effect[J]. The International Journal of Robotics Research, 2020, 39(14): 1686-1705.
doi: 10.1177/0278364920913926
URL
|
[50] |
SANTINA C D, PIAZZA C, SANTAERA G, et al. Estimating contact forces from postural measures in a class of under-actuated robotic hands[C]// Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Vancouver, Canada: IEEE, 2017: 2456-2463.
|
[51] |
DEL SOL ACERO E, KING R, SCOTT R, et al. External force estimation for teleoperation based on proprioceptive sensors[J]. International Journal of Advanced Robotic Systems, 2014, 11(3): 52.DOI: 10.5772/58468.
|
[52] |
ZHOU J S, CHEN Y H, CHEN X J, et al. A proprioceptive bellows (PB) actuator with position feedback and force estimation[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 1867-1874.
doi: 10.1109/LSP.2016.
URL
|
[53] |
KANEKO M, TANIE K. Contact point detection for grasping an unknown object using self-posture changeability[J]. IEEE Transactions on Robotics and Automation, 1994, 10(3): 355-367.
doi: 10.1109/70.294210
URL
|
[54] |
BELZILE B, BIRGLEN L. Stiffness analysis of double tendon underactuated fingers[C]// Proceedings of IEEE International Conference on Robotics & Automation. Hong Kong, China: IEEE, 2014: 6679-6684.
|
[55] |
PASTOR F, GANDARIAS J M, GARCÍA-CEREZO A J, et al. Grasping angle estimation of human forearm with underactuated grippers using proprioceptive feedback[C]// Proceedings of Iberian Robotics Conference. Porto, Portugal: Springer, 2019: 441-452.
|
[56] |
KARAYIANNIDIS Y, SMITH C, VINA F E, et al. Online contact point estimation for uncalibrated tool use[C]// Proceedings of IEEE International Conference on Robotics and Automation. Hong Kong, China: IEEE, 2014: 2488-2494.
|
[57] |
PARK M, JEONG B, PARK Y. Hybrid system analysis and control of a soft robotic gripper with embedded proprioceptive sensing for enhanced gripping performance[J]. Advanced Intelligent Systems, 2021, 3(3): 2000061.
doi: 10.1002/aisy.v3.3
URL
|
[58] |
ABDEETEDAL M, KERMANI M R. Grasp and stress analysis of an underactuated finger for proprioceptive tactile sensing[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(4): 1619-1629.
doi: 10.1109/TMECH.3516
URL
|
[59] |
DECKERS P, DOLLAR A M, HOWE R D. Guiding grasping with proprioception and Markov models[C]// Proceedings of Robotics: Science and Systems Conference. Atlanta, GA, US: MIT Press, 2007: 1-6.
|
[60] |
KORENBLIK J. Minimal sensing approach of an underactuated flexure based gripper for agri-food applications[D]. Enschede,the Netherlands: University of Twente, 2021.
|
[61] |
ANH HO V, HIRAI S. Modeling and analysis of a frictional sliding soft fingertip, and experimental validations[J]. Advanced Robotics, 2011, 25(3/4): 291-311.
doi: 10.1163/016918610X552123
URL
|
[62] |
VAN HO A, WANG Z K, HIRAI S. Beam bundle model of human-like fingertip for investigation of tactile mechanism[C]// Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo, Japan: IEEE, 2013: 4491-4498.
|
[63] |
JAMES J W, LEPORA N F. Slip detection for grasp stabilization with a multifingered tactile robot hand[J]. IEEE Transactions on Robotics, 2020, 37(2): 506-519.
doi: 10.1109/TRO.2020.3031245
URL
|
[64] |
CHOI B J, CHOI H R, KANG S C. Development of tactile sensor for detecting contact force and slip[C]// Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton, Canada: IEEE, 2005: 2638-2643.
|
[65] |
FERNANDEZ R, PAYO I, VAZQUEZ A S, et al. Micro-vibration-based slip detection in tactile force sensors[J]. Sensors, 2014, 14(1): 709-730.
doi: 10.3390/s140100709
pmid: 24394598
|
[66] |
VEIGA F, PETERS J, HERMANS T. Grip stabilization of novel objects using slip prediction[J]. IEEE Transactions on Haptics, 2018, 11(4): 531-542.
doi: 10.1109/TOH.2018.2837744
pmid: 29994541
|
[67] |
曾博. 操作感知一体化灵巧假手机构及滑动控制的研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
|
|
ZENG B. Research on mechanism and slip prevention control of a dexterous prosthetic hand with capabilities of manipulation and perception[D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese)
|
[68] |
YANG B, DUAN X G, DENG H. A simple method for slip detection of prosthetic hand[C]// Proceedings of IEEE International Conference on Information & Automation. Lijiang, China: IEEE, 2015: 2159-2164.
|
[69] |
SANCHEZ J, SCHNEIDER S, HOCHGESCHWENDER N, et al. Context-based adaptation of in-hand slip detection for service robots[J]. Ifac Papersonline, 2016, 49(15): 266-271.
|
[70] |
GUNJI D, ARAKI T, NAMIKI A, et al. Grasping force control of multi-fingered robot hand based on slip detection using tactile sensor[J]. Journal of the Robotics Society of Japan, 2007, 25(6): 970-978.
doi: 10.7210/jrsj.25.970
URL
|
[71] |
GOEGER D, ECKER N, WOERN H. Tactile sensor and algorithm to detect slip in robot grasping processes[C]// Proceedings of IEEE International Conference on Robotics and Biomimetics. Bangkok, Thailand: IEEE, 2009: 1480-1485.
|
[72] |
STACHOWSKY M, HUMMEL T, MOUSSA M, et al. A slip detection and correction strategy for precision robot grasping[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(5): 2214-2226.
doi: 10.1109/TMECH.2016.2551557
URL
|
[73] |
DAMIAN D D, FISCHER M, HERNANDEZ ARIETA A, et al. The role of quantitative information about slip and grip force in prosthetic grasp stability[J]. Advanced Robotics, 2018, 32(1): 12-24.
doi: 10.1080/01691864.2017.1396250
URL
|
[74] |
ISLEK C, OZDEMIR E. Design of a fuzzy safety margin derivation system for grip force control of robotic hand in precision grasp task[J]. International Journal of Advanced Robotic Systems, 2021, 18(3): 202722631.
|
[75] |
ABD M A, GONZALEZ I J, COLESTOCK T C, et al. Direction of slip detection for adaptive grasp force control with a dexterous robotic hand[C]// Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Auckland, New Zealand: IEEE, 2018: 21-27.
|
[76] |
MEIER M, PATZELT F, HASCHKE R, et al. Tactile convolutional networks for online slip and rotation detection[C]// Proceedings of International Conference on Artificial Neural Networks. Barcelona, Spain:Springer, 2016: 12-19.
|
[77] |
VAN WYK K, FALCO J. Calibration and analysis of tactile sensors as slip detectors[C]// Proceedings of IEEE International Conference on Robotics and Automation. Brisbane, Australia: IEEE, 2018: 2744-2751.
|
[78] |
JAMES J W, CHURCH A, CRAMPHORN L, et al. Tactile Model O: Fabrication and testing of a 3d-printed, three-fingered tactile robot hand[J]. Soft Robotics, 2021, 8(5): 594-610.
doi: 10.1089/soro.2020.0019
pmid: 33337925
|
[79] |
WAN Q, ADAMS R P, HOWE R D. Variability and predictability in tactile sensing during grasping[C]// Proceedings of IEEE International Conference on Robotics & Automation. Stockholm, Sweden: IEEE, 2016: 158-164.
|
[80] |
ALCAZAR J A, BARAJAS L G. Estimating object grasp sliding via pressure array sensing[C]// Proceedings of International Conference on Robotics & Automation. Saint Paul, MN, US: IEEE, 2012: 1740-1746.
|
[81] |
TADA Y, HOSODA K. Acquisition of multi-modal expression of slip through pick-up experiences[J]. Advanced Robotics, 2007, 21(5/6): 601-617.
doi: 10.1163/156855307780108213
URL
|
[82] |
SHIRAFUJI S, HOSODA K. Detection and prevention of slip using sensors with different properties embedded in elastic artificial skin on the basis of previous experience[J]. Robotics and Autonomous Systems, 2014, 62(1): 46-52.
doi: 10.1016/j.robot.2012.07.016
URL
|
[83] |
MAMUN A, IBRAHIM M Y. New approach to detection of incipient slip using inductive sensory system[C]// Proceedings of IEEE International Symposium on Industrial Electronics. Bari, Italy: IEEE, 2010: 1901-1906.
|
[84] |
FENG J H, JIANG Q. Slip and roughness detection of robotic fingertip based on FBG[J]. Sensors and Actuators A: Physical, 2019, 287: 143-149.
doi: 10.1016/j.sna.2019.01.018
|
[85] |
RIGI A, BAGHAEI NAEINI F, MAKRIS D, et al. A novel event-based incipient slip detection using dynamic active-pixel vision sensor (DAVIS)[J]. Sensors, 2018, 18(2): 333.
doi: 10.3390/s18020333
URL
|
[86] |
SUI R M, ZHANG L W, LI T M, et al. Incipient slip detection method with vision-based tactile sensor based on distribution force and deformation[J]. IEEE Sensors Journal, 2021, 21(22): 25973-25985.
doi: 10.1109/JSEN.2021.3119060
URL
|
[87] |
WILLIAM H, IBRAHIM Y, RICHARDSON B. A tactile sensor for incipient slip detection[J]. International Journal of Optomechatronics, 2007, 1(1): 46-62.
doi: 10.1080/15599610701232655
URL
|
[88] |
YUAN W Z, LI R, SRINIVASAN M A, et al. Measurement of shear and slip with a GelSight tactile sensor[C]// Proceedings of IEEE International Conference on Robotics and Automation. Seattle, WA, US: IEEE, 2015: 304-311.
|
[89] |
WATANABE N, OBINATA G. Grip force control based on the degree of slippage using optical tactile sensor[C]// Proceedings of International Symposium on Micro-NanoMechatronics and Human Science. Nagoya, Japan: IEEE, 2007: 466-471.
|
[90] |
MUTHUSAMY R, HUANG X, ZWEIRI Y, et al. Neuromorphic event-based slip detection and suppression in robotic grasping and manipulation[J]. IEEE Access, 2020, 8: 153364-153384.
doi: 10.1109/Access.6287639
URL
|
[91] |
WATERS I, JONES D, ALAZMANI A, et al. Utilising incipient slip for grasping automation in robot assisted surgery[J]. IEEE Robotics and Automation Letters, 2021, 7(2): 1071-1078.
doi: 10.1109/LRA.2021.3137554
URL
|
[92] |
WATERS I, ALAZMANI A, CULMER P. Engineering incipient slip into surgical graspers to enhance grasp performance[J]. IEEE Transactions on Medical Robotics and Bionics, 2020, 2(4): 541-544.
doi: 10.1109/TMRB
URL
|
[93] |
DONG S Y, MA D L, DONLON E, et al. Maintaining grasps within slipping bounds by monitoring incipient slip[C]// Proceedings of International Conference on Robotics and Automation. Montreal, QC, Canada:IEEE, 2019: 3818-3824.
|
[94] |
NARITA T, NAGAKARI S, CONUS W, et al. Theoretical derivation and realization of adaptive grasping based on rotational incipient slip detection[C]// Proceedings of IEEE International Conference on Robotics and Automation. Paris, France: IEEE, 2020: 531-537.
|
[95] |
CHEN W, KHAMIS H, BIRZNIEKS I, et al. Tactile sensors for friction estimation and incipient slip detection-toward dexterous robotic manipulation: a review[J]. IEEE Sensors Journal, 2018, 18(22): 9049-9064.
doi: 10.1109/JSEN.2018.2868340
URL
|
[96] |
MORITA N, NOGAMI H, HIGURASHI E, et al. Grasping force control for a robotic hand by slip detection using developed micro laser doppler velocimeter[J]. Sensors, 2018, 18(2): 326.
doi: 10.3390/s18020326
URL
|
[97] |
DZITAC P, MAZID A M, IBRAHIM M Y, et al. Friction-based slip detection in robotic grasping[C]// Proceedings of the 41st Annual Conference of the IEEE Industrial Electronics Society. Yokohama, Japan: IEEE, 2015:4871-4874.
|
[98] |
HASEGAWA H, MIZOGUCHI Y, TADAKUMA K, et al. Development of intelligent robot hand using proximity, contact and slip sensing[C]// Proceedings of IEEE International Conference on Robotics and Automation. Anchorage, AK, US: IEEE, 2010: 777-784.
|
[99] |
KENT B A, ENGEBERG E D. Grasp-dependent slip prevention for a dexterous artificial hand via wrist velocity feedback[J]. International Journal of Humanoid Robotics, 2014, 11(2): 1450016.
doi: 10.1142/S0219843614500169
URL
|
[100] |
ENGEBERG E D, MEEK S G. Adaptive sliding mode control for prosthetic hands to simultaneously prevent slip and minimize deformation of grasped objects[J]. IEEE/ASME Transactions on Mechatronics, 2011, 18(1): 376-385.
doi: 10.1109/TMECH.2011.2179061
URL
|
[101] |
DENG H, ZHANG Y, DUAN X G. Wavelet transformation-based fuzzy reflex control for prosthetic hands to prevent slip[J]. IEEE Transactions on Industrial Electronics, 2016, 64(5): 3718-3726.
doi: 10.1109/TIE.2016.2643603
URL
|
[102] |
薛腾, 刘文海, 潘震宇, 等. 基于视觉感知和触觉先验知识学习的机器人稳定抓取[J]. 机器人, 2021, 43(1): 1-8.
doi: 10.13973/j.cnki.robot.200040
|
|
XUE T, LIU W H, PAN Z Y, et al. Stable robotic grasp based on visual perception and prior tactile knowledge learning[J]. Robot, 2021, 43(1): 1-8. (in Chinese)
doi: 10.13973/j.cnki.robot.200040
|
[103] |
LEVINE S, PASTOR P, KRIZHEVSKY A, et al. Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection[J]. The International Journal of Robotics Research, 2018, 37(4/5): 421-436.
doi: 10.1177/0278364917710318
URL
|
[104] |
FUKUDA T, DARIO P, YANG G. Humanoid robotics-history, current state of the art, and challenges[J]. Science Robotics, 2017, 2(13): eaar4043.
doi: 10.1126/scirobotics.aar4043
URL
|