欢迎访问《兵工学报》官方网站,今天是 分享到:

兵工学报 ›› 2019, Vol. 40 ›› Issue (6): 1146-1153.doi: 10.3969/j.issn.1000-1093.2019.06.004

• 论文 • 上一篇    下一篇

基于独立电驱动履带车辆的地面参量估计方法研究

梁文利, 陈慧岩, 王博洋   

  1. (北京理工大学 机械与车辆学院, 北京 100081)
  • 收稿日期:2018-10-12 修回日期:2018-10-12 上线日期:2019-08-14
  • 作者简介:梁文利(1994—), 女, 硕士研究生。 E-mail: 2011172491@qq.com

A Ground Parameter Estimation Method for Independent Electric Tracked Vehicle

LIANG Wenli,CHEN Huiyan,WANG Boyang   

  1. (School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)
  • Received:2018-10-12 Revised:2018-10-12 Online:2019-08-14

摘要: 以独立电驱动履带车辆的大量试验数据为依托,提出一种基于驱动力统计学预测模型与车辆动力学模型相结合的算法,对道路阻力系数与转向阻力系数进行估计。根据过零航向角偏差点对车辆的行驶路径进行分割,并利用高斯混合模型对各路径段进行多元聚类,利用连续3个路径段的聚类标签表征运动基元的类型;以基元类型为依据实现数据的分组,利用高斯混合模型构建驱动力统计学预测模型。在进行地面参量估计时,当确定运动基元类型后,通过调用对应的驱动力统计学预测模型,利用高斯混合回归对两侧主动轮转矩进行预测。利用非线性最小二乘法,使得基于驱动力统计学预测模型得到的转矩预测值与基于动力学方程表征的转矩理论值误差最小,从而获得地面参量估计值。对实车采集到的数据进行处理,得到地面参量的测试值并与估计值进行对比,证明了该方法可以在使用较少传感器前提下,保证预测结果的精度与整体算法的效率。

关键词: 履带车辆, 运动基元, 高斯混合模型, 高斯混合回归, 地面参量估计

Abstract: An algorithm combining the driving force statistical prediction model and the vehicle dynamics model is established to estimate the ground parameters based on the experimental data of independent electric tracked vehicles. The path is segmented according to the deviation point of zero course angle, and the Gaussian mixture model (GMM) is used for the multivariate clustering of path segments. The clustering tags of three consecutive path segments are used to represent the types of motion primitive; the data is grouped based on the types of motion primitive, and then GMM is used to build a statistical prediction model. When the ground parameters are estimated, the driving wheel torques are predicted by calling the driving force statistical prediction model and using the Gaussian mixture regression (GMR) after the primitive type is determined. The nonlinear least squares method is used to minimize the errors of the predicted torque values from the statistical prediction model and the theoretical torque values characterized by a kinetic equation, thereby gaining the estimated values of ground parameters. The test values of ground parameters are obtained by processing the data collected from real vehicles compared with the estimated values. The results show that the proposed method can be used to guarantee the precision of predicted results and the overall efficiency of the algorithm on the premise that fewer sensors are used. Key

Key words: trackedvehicle, motionprimitive, Gaussianmixturemodel, Gaussianmixtureregression, groundparameterestimation

中图分类号: