[1] MORANDA P B. Comparison of estimates of circular probable error [J]. Journal of the American Statistical Association, 1959, 54(288): 794-800. [2] KAMAT A R. Some more estimates of circular probable error [J]. Journal of the American Statistical Association, 1962, 57(297): 191-195. [3] PAL N, LIM W K. Estimation of circular error probable and measuring the accuracy of a missile system [J]. Statistical Methods, 2003, 2(2): 97-120. [4] 张领科, 王中原, 王枫. 基于命中概率建立通用射表判据的研究[J]. 兵工学报, 2006, 27(2):206-209. ZHANG L K, WANG Z Y, WANG F. A study on establishing the criterion of current firing table based on hit probability[J]. Acta Armamentarii, 2006, 27(2):206-209. (in Chinese) [5] 王光辉,王瑞琪,朱兴邦,等.超视距反舰导弹命中概率分析[J]. 弹箭与制导学报,2008, 28(2): 33-35. WANG G H, WANG R Q, ZHU X B, et al. Analysis of beyond-line-of-sight anti-ship missile's hit probability [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2008, 28(2): 33-35. (in Chinese) [6] SCHULA K F, CHALMERS I, HAYES R J, et al. Empirical evidence of bias: dimensions of methodological quality associated with estimates of treatment effects in controlled trials[J]. Journal of the American Medical Association, 1995, 273(5): 408-412. [7] LANDIS J R, KOCH G G. A one-way components of variance model for categorical data [J]. Biometrics, 1977, 33(4): 671-679. [8] TRAAT I. Introduction to variance estimation, 2nd edition by WOLTER K M [J]. International Statistical Review, 2007, 75(3): 409-438. [9] CAMPBELL W M, STURIM D E, REYNOLDS D A. Support vector machines using GMM supervectors for speaker verification [J]. IEEE Signal Processing Letters, 2006, 13(5): 308-311.
[10] JING P L, TU R B, XU S Y, et al. Binomial splitting Gaussian mixture implementation of the unscented Kalman probability hypothesis density filter[C]∥IEEE International Radar Conference. Krakow, Poland: IEEE, 2016. [11] MCLACHLAN G J, KRISHNAN T. The EM algorithm and extensions [J]. Biometrics, 2008, 382(1): 154-156. [12] PASHA S A, TUAN H D, VO B N. Nonlinear Bayesian filtering using the unscented linear fractional transformation model [J]. IEEE Transactions on Signal Processing, 2010, 58(2): 477-489. [13] 井沛良. 复杂条件下多目标跟踪关键技术研究[D]. 长沙:国防科技大学, 2016. JING P L. Research on key technologies of multi-target tracking under complex conditions [D]. Changsha: National University of Defense Technology, 2016. (in Chinese) [14] DEMPSTER A P, LAIRD N M, RUBIN D B. Maximum likelihood from incomplete data via the EM algorithm [J]. Journal of the Royal Statistical Society, 1977, 39(1): 1-38. [15] COX I J, HINGORANI S L, RAO S B, et al. A maximum likelihood stereo algorithm [J]. Computer Vision & Image Understanding, 1996, 63(3):542-567. [16] MARCO D, CHRISTIAN B. Ant colony optimization theory: a survey [J]. Theoretical Computer Science, 2005, 344(2/3): 243-278. [17] MARCO D, MONTES D, SABRINA O, et al. Ant colony optimization [J]. IEEE Computational Intelligence Magazine, 2006, 1(4): 28-39. [18] WHITLEY D. A genetic algorithm tutorial [J]. Statistics and Computing, 1994, 4(2): 65-85. [19] 刘志浩, 高钦和, 刘准, 等. 重载轮胎面内刚柔耦合动力学建模及振动传递特性分析[J]. 兵工学报, 2018, 39(2):224-233. LIU Z H, GAO Q H, LIU Z, et al. In-plane rigid-elastic coupling dynamic modeling and vibration response prediction of heavy duty radial tire[J]. Acta Armamentarii, 2018, 39(2):224- 233. (in Chinese) [20] LUO X L, FU X L. Configuration optimization method of Hadoop system performance based on genetic simulated annealing algorithm[J]. Cluster Computing, 2018(2): 1-9. [21] OTTEN R, GINNEKEN L. The annealing algorithm[M]. Boston, MA, US: Kluwer Academic Publishers, 1989. [22] MAHLER R P S. Statistical multisource multitarget information fusion[M]. Norwood: Artech House, 2007. [23] ABBASBANDY S. Improving Newton-Raphson method for nonlinear equations by modified Adomian decomposition method [J]. Applied Mathematics & Computation, 2003, 145(2): 887-893. [24] YPMA T J. Historical development of the Newton-Raphson method [J]. SIAM Review, 1995, 37(4): 531-551. [25] FRIEDLAND S, HERSONSKY S. Gensen's inequality for discrete groups in normed algebras [J]. Duke Mathematical Journal, 1993, 69(3): 593-614. [26] KULLBACK S. The Kullback-Leibler distance [J]. The American Statistician, 1987, 41(4): 340-341.
第40卷第2期 2019 年2月兵工学报ACTA ARMAMENTARIIVol.40No.2Feb. 2019
|