欢迎访问《兵工学报》官方网站,今天是 分享到:

兵工学报 ›› 2022, Vol. 43 ›› Issue (5): 969-981.doi: 10.12382/bgxb.2021.0256

• 论文 • 上一篇    下一篇

混合动力履带车辆机电联合制动控制

张伟, 刘辉, 韩立金, 刘宝帅, 张勋, 张万年   

  1. (北京理工大学 机械与车辆学院, 北京 100081)
  • 上线日期:2022-05-17
  • 通讯作者: 刘辉(1975—),女,教授,博士生导师 E-mail:lh@bit.edu.cn
  • 作者简介:张伟(1992—),男,博士研究生。E-mail:weizhangysu@163.com
  • 基金资助:
    国家自然科学基金项目(51775040)

Intelligent Control Strategy of Electromechanical Braking for Hybrid Tracked Vehicle

ZHANG Wei, LIU Hui, HAN Lijin, LIU Baoshuai, ZHANG Xun, ZHANG Wannian   

  1. (School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)
  • Online:2022-05-17

摘要: 为提升混联式机电复合传动(EMT)履带车辆全路况条件下机电联合制动的稳定性,提出一种基于电机饱和度的可变比例系数并联式全工况机电制动力分配策略,以有效处理路面附着条件、驾驶员意图、滑移率和电池荷电状态等约束,减弱履带打滑现象和电机制动力饱和现象。建立EMT系统动力学模型,分析工况约束条件下系统的机电制动特性和动态约束边界。提出以电机制动饱和度为核心的动态机电制动力分配目标,并设计滑移率控制器,以实现满足全工况制动稳定性目标的总制动力求解和底层机电制动力协调分配。利用扩张型状态观测器精确估计时变路面附着系数,并基于遗传算法对控制参数进行优化。利用仿真和硬件在环实验对高速紧急制动进行模拟。研究结果表明:全路况机电联合制动控制策略满足整车制动性能要求,兼顾制动能量回收效率和电机安全运行等多种指标,有效降低液压制动器的机械压力,提高了制动器使用寿命和制动过程的安全性。

关键词: 混合动力履带车辆, 电机制动力, 机电联合制动, 状态观测, 滑移率控制

Abstract: For the better stability of electromechanical braking of tracked vehicles equipped with hybrid electromechanical transmission(EMT) under all road conditions, a parallel electromechanical braking force distribution strategy with variable proportion coefficient based on motor saturation was proposed. This strategy effectively deals with the constraints of road adhesion conditions, driver intention, slip rate, and battery state of charge, and significantly reduces track slip and motor braking force saturation. Firstly, the dynamic model of the EMT was established, and the electromechanical braking characteristics and dynamic constraint boundary were analyzed. Secondly, the expected dynamic braking force distribution based on motor braking saturation was proposed. In addition, the slip rate controller was designed to calculate the total braking force and coordinate electromechanical braking force distribution to meet the braking stability target in all working conditions. Then, the extended state observer was applied to accurately estimate the time-varying road adhesion coefficient, and the control parameters were optimized based on genetic algorithm. Finally, hardware-in-the-loop simulation was applied to simulate the high-speed emergency braking. The results showed that the electromechanical braking control strategy for all road conditions considers the braking energy recovery efficiency and the safe operation of the motor, and effectively reduces the pressure of the hydraulic brake and improves the brake life and safety in the braking process.

Key words: hybridtrackedvehicle, motorbrakingforce, electromechanicalbrake, stateobservation, slipratecontrol

中图分类号: