Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (2): 240329-.doi: 10.12382/bgxb.2024.0329
Previous Articles Next Articles
CUI Suxiao1, WU Zhe1, CUI Yanping1,*(), ZHANG Qiang2, ZHAO Yuejing1
Received:
2024-04-26
Online:
2025-02-28
Contact:
CUI Yanping
CUI Suxiao, WU Zhe, CUI Yanping, ZHANG Qiang, ZHAO Yuejing. Fault Diagnosis of Planetary Gearbox Based on Frequency Slice Wavelet Transform and Attention-enhanced ConvNeXt Model[J]. Acta Armamentarii, 2025, 46(2): 240329-.
Add to citation manager EndNote|Ris|BibTeX
部件 | 齿轮齿数 | |
---|---|---|
第1级 | 第2级 | |
齿圈 | 100 | 100 |
行星轮 | 40×3 | 36×4 |
太阳轮 | 20 | 28 |
Table 1 Specification of planetary gearbox
部件 | 齿轮齿数 | |
---|---|---|
第1级 | 第2级 | |
齿圈 | 100 | 100 |
行星轮 | 40×3 | 36×4 |
太阳轮 | 20 | 28 |
网络模型 | 准确率 | 精确率 | 召回率 | F1 |
---|---|---|---|---|
CBAM-ConvNeXt模型 | 99.98 | 99.98 | 99.98 | 99.98 |
ConvNeXt-T模型 | 99.89 | 99.88 | 99.90 | 99.89 |
Resnet34模型 | 99.10 | 99.10 | 99.10 | 99.10 |
Densnet121模型 | 95.21 | 95.34 | 95.20 | 95.27 |
Swin Transformer网络模型 | 99.31 | 99.32 | 99.30 | 99.31 |
Table 2 Comparison of evaluation indicators for different network model test sets %
网络模型 | 准确率 | 精确率 | 召回率 | F1 |
---|---|---|---|---|
CBAM-ConvNeXt模型 | 99.98 | 99.98 | 99.98 | 99.98 |
ConvNeXt-T模型 | 99.89 | 99.88 | 99.90 | 99.89 |
Resnet34模型 | 99.10 | 99.10 | 99.10 | 99.10 |
Densnet121模型 | 95.21 | 95.34 | 95.20 | 95.27 |
Swin Transformer网络模型 | 99.31 | 99.32 | 99.30 | 99.31 |
[1] |
赵文辉, 孙晓恒, 张伟东, 等. 四旋翼飞行器齿轮箱-支臂组件动态特性分析[J]. 兵工学报, 2022, 43(5):1175-1184.
doi: 10.12382/bgxb.2021.0001 |
|
|
[2] |
|
[3] |
|
[4] |
王卫国, 孙磊. 基于EEMD-CWD的齿轮箱振动信号故障特征提取[J]. 兵工学报, 2014, 35(8):1288-1294.
doi: 10.3969/j.issn.1000-1093.2014.08.023 |
|
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
doi: 10.1016/j.ymssp.2019.04.028 |
[10] |
|
[11] |
熊鹏, 汤宝平, 邓蕾, 等. 基于动态加权密集连接卷积网络的变转速行星齿轮箱故障诊断[J]. 机械工程学报, 2019, 55(07):52-57.
|
doi: 10.3901/JME.2019.07.052 |
|
[12] |
|
[13] |
王辉, 徐佳文, 严如强. 基于多尺度注意力深度强化学习网络的行星齿轮箱智能诊断方法[J]. 机械工程学报, 2022, 58(11):133-142.
doi: 10.3901/JME.2022.11.133 |
doi: 10.3901/JME.2022.11.133 |
|
[14] |
|
[15] |
黄佳欢, 余建波. 基于形态帽积卷积自编码器模型的齿轮箱故障诊断[J]. 机械工程学报, 2023, 59(23):132-145.
doi: 10.3901/JME.2023.23.132 |
|
|
[16] |
师恩容. 采用改进Transformer的挤压机齿轮箱故障诊断技术研究[J]. 制造业自动化, 2024, 46(3):142-146.
|
|
|
[17] |
古莹奎, 石昌武, 陈家芳. 基于格拉姆角场与深度卷积生成对抗网络的行星齿轮箱故障诊断[J]. 噪声与振动控制, 2024, 44(1):111-118.
|
|
|
[18] |
|
[19] |
|
[20] |
|
[1] | GUO Yiming, TONG Yifei, HE Fei, XIE Zhongqu, SONG Shida, HUANG Jing. Sample Imbalanced Fault Diagnosis Method Based on Multi-channel Data Double Augmentation [J]. Acta Armamentarii, 2025, 46(2): 240012-. |
[2] | LI Yangjun, HUANG Qilong, YANG Li, CHEN Xu. Combat Intention Recognition of Air Cluster Targets Driven by Data and Knowledge [J]. Acta Armamentarii, 2025, 46(2): 240113-. |
[3] | FENG Yingbin, GUO Xiaozun, YAN Jiahua. Small UVA Target Detection Algorithm Based on Multi-scale Attention Mechanism [J]. Acta Armamentarii, 2025, 46(1): 231124-. |
[4] | SUN Xichen, LI Weibing, HUANG Changwei, FU Jiawei, FENG Jun. Multi-step-ahead Prediction of Grenade Trajectory Based on CNN-LSTM Enhanced by Deep Learning and Self-attention Mechanism [J]. Acta Armamentarii, 2024, 45(S1): 51-59. |
[5] | YANG Huanyu, WANG Jun, WU Xiang, BO Yuming, MA Lifeng, LU Jinlei. A Method for Military Aircraft Recognition Using a Coordinate Attention-based Deep Learning Network [J]. Acta Armamentarii, 2024, 45(7): 2128-2143. |
[6] | LIU Peng, XIONG Zeyu, JING Wenbo, FENG Xuan, ZHANG Junhao, LIU Tongbo, WU Xueni, XIA Xuan, WAN Linlin, ZHAO Haili. Degrad Target Detection Algorithm [J]. Acta Armamentarii, 2024, 45(6): 2065-2075. |
[7] | WU Lingxiao, KANG Jiayin, JI Yunxiang, MA Hanyan. Infrared and Visible Image Fusion Using Dual-stream Generative Adversarial Network with Multiple Discriminators [J]. Acta Armamentarii, 2024, 45(6): 1799-1812. |
[8] | LIN Sen, WANG Jingang, GAO Hongwei. Battlefield Image Dehazing Based on Global Compensation Attention Mechanism [J]. Acta Armamentarii, 2024, 45(4): 1344-1353. |
[9] | WANG Jiahao, NA Wenbo, LIU Zhiwei, ZAN Qi, WANG Zheng. Sensor Fault Diagnosis Method of Double Closed Loop Ratio Control System [J]. Acta Armamentarii, 2024, 45(4): 1252-1263. |
[10] | SONG Xiaoru, LIU Kang, GAO Song, CHEN Chaobo, YAN Kun. Research on Improved YOLOv5-based Military Target Recognition Algorithm Used in Complex Battlefield Environment [J]. Acta Armamentarii, 2024, 45(3): 934-947. |
[11] | LOU Shuhan, WANG Chongchong, GONG Wei, DENG Liyuan, LI Li. Collaborative Regional Information Collection Strategy Based on MLAT-DRL Algorithm [J]. Acta Armamentarii, 2024, 45(12): 4423-4434. |
[12] | LI Haotian, CUI Xinyu, LIU Mengzhen, HUANG Guangyan, LÜ Zhongjie, ZHANG hong. Research on the Identification of Spherical Explosive Fragmentation Damage Effect Based on Siamese Networks and Regional Attention Mechanisms [J]. Acta Armamentarii, 2024, 45(12): 4259-4271. |
[13] | WANG Bin, XU Yadong, WANG Liangkuan. Development and Trend of Research on Fault Diagnosis Methods for Ammunition Loading System [J]. Acta Armamentarii, 2024, 45(11): 3765-3780. |
[14] | SUN Kai, ZHANG Cheng, ZHAN Tian, SU Di. Multi-view Stereo Vision Reconstruction Network with Fusion Attention Mechanism and Multi-layer Dynamic Deformable Convolution [J]. Acta Armamentarii, 2024, 45(10): 3631-3641. |
[15] | LÜ Weimin, SUN Chenfeng, REN Likun, ZHAO Jie, LI Yongqiang. A Gas Path Fault Diagnosis Method for Aero-engine Based on TCN-LGBM Model [J]. Acta Armamentarii, 2024, 45(1): 253-263. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||