Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (2): 240376-.doi: 10.12382/bgxb.2024.0376
Previous Articles Next Articles
ZHAO Chunbo1, MO Bo1,*(), LI Dawei2, ZHAO Jie3
Received:
2024-05-16
Online:
2025-02-28
Contact:
MO Bo
CLC Number:
ZHAO Chunbo, MO Bo, LI Dawei, ZHAO Jie. Research on Motion Blur Object Detection Technology for Imaging Guidance[J]. Acta Armamentarii, 2025, 46(2): 240376-.
Add to citation manager EndNote|Ris|BibTeX
CPU参数 | 数值 | GPU参数 | 数值 |
---|---|---|---|
Intel(R) Core(TM) | i9-7980XE | NVIDIA GeForce RTX | 3090 |
基准速度 | 2.60GHz | 内存 | 24.0GB |
内核 | 18 | Pytorch版本 | 1.10.1 |
逻辑处理器 | 36 | CUDA版本 | 11.3 |
Table 1 CPU/GPU and its related parameters
CPU参数 | 数值 | GPU参数 | 数值 |
---|---|---|---|
Intel(R) Core(TM) | i9-7980XE | NVIDIA GeForce RTX | 3090 |
基准速度 | 2.60GHz | 内存 | 24.0GB |
内核 | 18 | Pytorch版本 | 1.10.1 |
逻辑处理器 | 36 | CUDA版本 | 11.3 |
PIDSFENet | PDS | EPAFPN | CLPAFPN | 轿车 | 货车 | 卡车 | 公交车 | 厢式货车 | 召回率 | mAP0.5/% | 精确率 | 参数量/106 | 消耗算力/109 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
× | × | × | × | 85.7 | 42.7 | 56.7 | 90.6 | 44.5 | 61.1 | 64.1 | 65.4 | 2.01 | 5.0 |
√ | × | × | × | 88.7 | 50.4 | 62.4 | 92.2 | 48.0 | 63.7↑2.6 | 68.3↑4.2 | 71.3↑5.9 | 2.01 | 5.0 |
√ | √ | × | × | 89.0 | 47.2 | 64.7 | 92.8 | 49.6 | 62.3↑1.2 | 68.7↑4.6 | 75.1↑9.7 | 1.19↓40.5% | 3.3↓36% |
√ | √ | √ | × | 88.0 | 44.0 | 58.5 | 89.7 | 46.9 | 62.5↑1.4 | 65.4↑1.3 | 67.9↑2.5 | 1.28↓36% | 6.4↑28% |
√ | √ | × | √ | 88.5 | 47.2 | 59.1 | 90.5 | 48.4 | 62.0↑0.9 | 66.7↑2.6 | 71.8↑6.4 | 1.55↓22.5% | 8.1↑62% |
Table 2 Ablation test data of motion blur image object detection network
PIDSFENet | PDS | EPAFPN | CLPAFPN | 轿车 | 货车 | 卡车 | 公交车 | 厢式货车 | 召回率 | mAP0.5/% | 精确率 | 参数量/106 | 消耗算力/109 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
× | × | × | × | 85.7 | 42.7 | 56.7 | 90.6 | 44.5 | 61.1 | 64.1 | 65.4 | 2.01 | 5.0 |
√ | × | × | × | 88.7 | 50.4 | 62.4 | 92.2 | 48.0 | 63.7↑2.6 | 68.3↑4.2 | 71.3↑5.9 | 2.01 | 5.0 |
√ | √ | × | × | 89.0 | 47.2 | 64.7 | 92.8 | 49.6 | 62.3↑1.2 | 68.7↑4.6 | 75.1↑9.7 | 1.19↓40.5% | 3.3↓36% |
√ | √ | √ | × | 88.0 | 44.0 | 58.5 | 89.7 | 46.9 | 62.5↑1.4 | 65.4↑1.3 | 67.9↑2.5 | 1.28↓36% | 6.4↑28% |
√ | √ | × | √ | 88.5 | 47.2 | 59.1 | 90.5 | 48.4 | 62.0↑0.9 | 66.7↑2.6 | 71.8↑6.4 | 1.55↓22.5% | 8.1↑62% |
算法 | 召回率 | mAP0.5/ % | 精确率 | 参数 量/106 | 消耗算 力/109 | 帧率/ (帧·s-1) |
---|---|---|---|---|---|---|
Spec By Exposure | 53.0 | 64.9 | 41.5 | 67.3 | 20.9 | |
TPH-YOLOv5++ | 67.4 | 74.6 | 79.9 | 7.18 | 29.9 | 59.5 |
LEMBD | 69.6 | 75.2 | 79.0 | 4.90 | 17.8 | 55.5 |
Table 3 Comparative experiments on similar algorithms for object detection in motion blurred images
算法 | 召回率 | mAP0.5/ % | 精确率 | 参数 量/106 | 消耗算 力/109 | 帧率/ (帧·s-1) |
---|---|---|---|---|---|---|
Spec By Exposure | 53.0 | 64.9 | 41.5 | 67.3 | 20.9 | |
TPH-YOLOv5++ | 67.4 | 74.6 | 79.9 | 7.18 | 29.9 | 59.5 |
LEMBD | 69.6 | 75.2 | 79.0 | 4.90 | 17.8 | 55.5 |
情形 | 真实目标 | 基准算法 | 本文算法 | ||
---|---|---|---|---|---|
小目标 | | | | ||
部分缺 失目标 | | | | ||
黑暗环境 下目标 | | | | ||
| | |
Table 4 Detected results of objects in different environments
情形 | 真实目标 | 基准算法 | 本文算法 | ||
---|---|---|---|---|---|
小目标 | | | | ||
部分缺 失目标 | | | | ||
黑暗环境 下目标 | | | | ||
| | |
[1] |
李成, 李建勋, 童中翔, 等. 红外成像制导末端局部图像识别跟踪研究[J]. 兵工学报, 2015, 36(7):1213-1221.
doi: 10.3969/j.issn.1000-1093.2015.07.009 |
doi: 10.3969/j.issn.1000-1093.2015.07.009 |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[1] | XU Tunan, GAO Ang, CHEN Yucheng, YAN Shoucheng, DENG Bin. A Lightweight Recognition Method for Low Altitude Targets in the Battlefield [J]. Acta Armamentarii, 2025, 46(2): 240170-. |
[2] | LIU Chengzhe, WANG Haifu, ZHANG Jiahao, ZHENG Yuanfeng. Research on Behavior of Lightweight High-entropy Alloy Jet Penetrating Concrete Targets [J]. Acta Armamentarii, 2024, 45(S1): 60-69. |
[3] | YIN Guohua, QI Yongsheng, LIU Liqiang, SU Jianqiang, ZHANG Lijie. Lightweight and Fast Target Tracking Algorithm Based on Ghost-TiFPN [J]. Acta Armamentarii, 2024, 45(5): 1703-1716. |
[4] | ZHAO Xiaoqiang, CHENG Wei. Lightweight Image Super-resolution Reconstruction Based on Cross-fusion of Spatial Features [J]. Acta Armamentarii, 2024, 45(4): 1273-1284. |
[5] | YUAN Mingzheng, PAN Teng, BIAN Xiaobing, YANG Lei, ZHOU Hongyuan, HUANG Guangyan, ZHANG Hong. Response Characteristics of Curved Fiber Composite Protective Shelter under the action of Explosive Shock Wave [J]. Acta Armamentarii, 2023, 44(12): 3909-3920. |
[6] | CAO Haozhe, LIU Quanpan. Unmanned Swarm Collaborative Visual SLAM Algorithm Based on Semi-direct Method [J]. Acta Armamentarii, 2023, 44(11): 3345-3358. |
[7] | LI Zuoxuan, JIA Liangyue, HAO Jia, WANG Chao, WANG Guoxin, MING Zhenjun, YAN Yan. Lightweight Optimization Design of Unmanned Vehicle Body Structure Based on Multi-working Conditions Correlation [J]. Acta Armamentarii, 2023, 44(11): 3529-3542. |
[8] | CUI Lingfei, GUO Yonghong, XIU Quanfa, SHI Chao, ZHANG Shuoyang. UAV Detection Method Based on Domestic Embedded Intelligent Computing Platform [J]. Acta Armamentarii, 2022, 43(S1): 146-154. |
[9] | YAN Jiwei, SU Juan, LI Yihong. Building Detection Algorithm in SAR Images Based on Ghost Convolution and Attention Mechanisms [J]. Acta Armamentarii, 2022, 43(7): 1667-1675. |
[10] | MA Yuehong, KONG Mengyao. A Lightweight Target Detection Algorithm Based on the Improved Faster-RCNN [J]. Acta Armamentarii, 2021, 42(12): 2664-2674. |
[11] | ZOU Tiangang, YAN Qingdong, GAI Jiangtao, HOU Wei, WANG Zhitao, SHUAI Zhibin, SUN Xueyan. The Scheme of Lightweight Integrated Mixing Transmission Based on Flat Motor for Tracked Vehicle [J]. Acta Armamentarii, 2021, 42(10): 2233-2241. |
[12] | LIANG Jie, REN Jun, LI Lei, QI Hang, ZHOU Hongli. Airport Runway Detection Agorithm Based on Accurate Regression of Typical Geometric Shapes [J]. Acta Armamentarii, 2020, 41(10): 2045-2054. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||