Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (1): 231210-.doi: 10.12382/bgxb.2023.1210
Previous Articles Next Articles
LI Xianghui1,2, ZHANG Xingyu1,2, HU Jiahao1,2, LIU Yang1,2, MA Bohan3, WANG Yonggang1,2, JIANG Zhaoxiu1,2,*()
Received:
2023-12-26
Online:
2024-03-25
Contact:
JIANG Zhaoxiu
CLC Number:
LI Xianghui, ZHANG Xingyu, HU Jiahao, LIU Yang, MA Bohan, WANG Yonggang, JIANG Zhaoxiu. Study on the Large Plasticity Model and Fracture Initiation Model Parameters of AISI 4340 Steel Targets[J]. Acta Armamentarii, 2025, 46(1): 231210-.
Add to citation manager EndNote|Ris|BibTeX
2.086 | 2.816 | 1.845 |
Table 1 Fracture displacements of specimens mm
2.086 | 2.816 | 1.845 |
试验序号 | 着靶速度/ (m·s-1) | 侵彻深度/ mm | 2号靶弹坑 直径/mm |
---|---|---|---|
1 | 1733.3 | 50.52 | 16.84 |
2 | 1714.5 | 51.43 | 16.42 |
3 | 1765.5 | 52.00 | 17.23 |
Table 2 Penetration test results
试验序号 | 着靶速度/ (m·s-1) | 侵彻深度/ mm | 2号靶弹坑 直径/mm |
---|---|---|---|
1 | 1733.3 | 50.52 | 16.84 |
2 | 1714.5 | 51.43 | 16.42 |
3 | 1765.5 | 52.00 | 17.23 |
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
E/GPa | 210 | C | 0.023 |
υ | 0.3 | 0/s-1 | 0.001 |
A0/MPa | 1111 | Tr/℃ | 25 |
ε0 | 0.0007 | Tm/℃ | 1520 |
n0 | 0.162 | m | 0.85 |
k0/MPa | 423.5 | ηk | 0.9 |
Q1/MPa | 383 | ρ/(kg·m-3) | 7850 |
β | 25 | Cv/(J·kg-1·℃-1) | 477 |
α | 0.6 |
Table 3 The plasticity model parameters for AISI 4340 steel
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
E/GPa | 210 | C | 0.023 |
υ | 0.3 | 0/s-1 | 0.001 |
A0/MPa | 1111 | Tr/℃ | 25 |
ε0 | 0.0007 | Tm/℃ | 1520 |
n0 | 0.162 | m | 0.85 |
k0/MPa | 423.5 | ηk | 0.9 |
Q1/MPa | 383 | ρ/(kg·m-3) | 7850 |
β | 25 | Cv/(J·kg-1·℃-1) | 477 |
α | 0.6 |
参数 | 数值 |
---|---|
a | 1.38 |
b | 1.213 |
c | 0.0035 |
DNT6 | 0.9927 |
DNT20 | 1.0173 |
DSH | 1.0013 |
Table 4 Fracture initiation model parameters for AISI 4340 steel and the corresponding Di at the moment of fracture displacement d i f for NT6,NT20 and SH
参数 | 数值 |
---|---|
a | 1.38 |
b | 1.213 |
c | 0.0035 |
DNT6 | 0.9927 |
DNT20 | 1.0173 |
DSH | 1.0013 |
参数 | 数值 |
---|---|
E/GPa | 210 |
υ | 0.3 |
ρ/(g·cm-3) | 7.8 |
Table 5 The model parameters of bars
参数 | 数值 |
---|---|
E/GPa | 210 |
υ | 0.3 |
ρ/(g·cm-3) | 7.8 |
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
ρ/(kg·m-3) | 17600 | D1 | 0.008 |
G/GPa | 160 | D2 | 0.115 |
A/MPa | 645 | D3 | 4.26 |
B/MPa | 419 | D4 | 0.2 |
n | 0.31 | D5 | 3.74 |
C | 0.05 | Cv/(J·kg-1·℃-1) | 134 |
m | 0.5 | C0/(m·s-1) | 3 850 |
0/s-1 | 0.001 | S1 | 1.24 |
Tr/℃ | 25 | γ0 | 1.58 |
Tm/℃ | 1 479 | ηk | 0.9 |
Table 6 Model parameters of 93WHA
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
ρ/(kg·m-3) | 17600 | D1 | 0.008 |
G/GPa | 160 | D2 | 0.115 |
A/MPa | 645 | D3 | 4.26 |
B/MPa | 419 | D4 | 0.2 |
n | 0.31 | D5 | 3.74 |
C | 0.05 | Cv/(J·kg-1·℃-1) | 134 |
m | 0.5 | C0/(m·s-1) | 3 850 |
0/s-1 | 0.001 | S1 | 1.24 |
Tr/℃ | 25 | γ0 | 1.58 |
Tm/℃ | 1 479 | ηk | 0.9 |
[1] |
|
[2] |
|
[3] |
马利, 郑津洋, 胡洋, 等. AISI4340钢的绝热剪切与动态失效准则[J]. 兵工学报, 2010, 31(增刊1):79-83.
|
|
|
[4] |
李晓源, 时捷. 弹丸高速冲击条件下高强度钢板抗弹性能[J]. 钢铁研究学报, 2020, 32(5):429-436.
doi: 10.13228/j.boyuan.issn1001-0963.20200012 |
|
|
[5] |
|
[6] |
王建军. 典型金属塑性流动中反常应力峰及其本构关系[D]. 西安: 西北工业大学, 2017.
|
|
|
[7] |
王强, 王建军, 张晓琼, 等. 金属热黏塑性本构关系的研究进展[J]. 爆炸与冲击, 2022, 42(9):091402.
|
|
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
袁康博, 姚小虎, 王瑞丰, 等. 金属材料的率-温耦合响应与动态本构关系综述[J]. 爆炸与冲击, 2022, 42(9):091401.
|
|
|
[13] |
|
[14] |
朱磊, 刘洋, 孟锦晖, 等. 激光选区熔化Ti-6Al-4V合金的动态力学性能及其本构关系[J]. 爆炸与冲击, 2022, 42(9):091405.
|
|
|
[15] |
马铭辉, 余毅磊, 蒋招绣, 等. 675装甲钢的静动态力学行为与J-C模型参数拟合确定[J]. 北京理工大学学报, 2022, 42(6):596-603.
|
|
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
李鹤飞. 高强钢断裂韧性与裂纹扩展机制研究[D]. 合肥: 中国科学技术大学, 2019.
|
|
|
[25] |
|
[26] |
|
[27] |
|
[28] |
林莉, 支旭东, 范锋, 等. Q235B钢Johnson-Cook模型参数的确定[J]. 振动与冲击, 2014, 33(9):153-158,172.
|
|
|
[29] |
任冀宾, 汪存显, 张欣玥, 等. 2A97铝锂合金的Johnson-Cook本构模型及失效参数[J]. 华南理工大学学报(自然科学版), 2019, 47(8):136-144.
doi: 10.12141/j.issn.1000-565X.180554 |
|
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
马东方. 基于空穴聚集的高应变率低应力三轴度拉伸断裂机理研究[D]. 宁波: 宁波大学, 2013.
|
|
|
[36] |
王礼立. 应力波基础[M]. 第2版. 北京: 国防工业出版社, 2005.
|
|
|
[37] |
郭鑫. 大变形霍普金森拉杆实验技术[D]. 宁波: 宁波大学, 2019.
|
|
|
[38] |
|
[39] |
马伯翰. 电阻点焊区域的弹丸冲击响应研究与点焊区材料特性初探[D]. 宁波: 宁波大学, 2021.
|
|
|
[40] |
|
[41] |
|
[42] |
|
[43] |
杜成鑫. Wf/Zr基非晶复合材料杆弹准细观侵彻机理及优化设计[D]. 南京: 南京理工大学, 2019.
|
|
|
[44] |
|
[45] |
|
[1] | MA Li, FAN Jikang, ZHANG Jian, CONG Baoqiang, YANG Dongqing, PENG Yong, WANG Kehong. Effect of Ultrasonic Frequency Pulse Current Superposition on the Microstructure and Properties of GMA Additive Manufactured High Nitrogen Steel [J]. Acta Armamentarii, 2025, 46(1): 231097-. |
[2] | GAO Maoguo, LIU Rui, GUO Yansong, GENG Hengheng, CHEN Pengwan. Dynamic Deformation,Damage and Failure Behaviors of High-entropy HfZrTiTaAl Alloy [J]. Acta Armamentarii, 2025, 46(1): 231183-. |
[3] | DONG Jun, JIANG Di, SUN Liang, SONG Mengyan, CHEN Fei, LIU Mengsha, REN Yike. Experimental Research on the Impact of Flying Object on Prestressed Reinforced Concrete Target Plates [J]. Acta Armamentarii, 2024, 45(S2): 176-185. |
[4] | YANG Zehuan, ZHANG Xianfeng, LIU Chuang, TAN Mengting, XIONG Wei. Theoretical Model for Impact Load of Kinetic Energy Missile [J]. Acta Armamentarii, 2024, 45(S1): 20-32. |
[5] | XU Hengwei, LU Yonggang, LI Junrun, FENG Xiaowei, LU Zhengcao. A Theoretical Model for the Cross-sectional Area of a Projectile Considering Deformation and Erosion Coupling [J]. Acta Armamentarii, 2024, 45(S1): 97-104. |
[6] | LIU Chengzhe, WANG Haifu, ZHANG Jiahao, ZHENG Yuanfeng. Research on Behavior of Lightweight High-entropy Alloy Jet Penetrating Concrete Targets [J]. Acta Armamentarii, 2024, 45(S1): 60-69. |
[7] | SU Chenghai, WANG Zhong, MA Hongbing, ZHENG Yuanfeng, WANG Haifu. Dynamic Damage Characteristics of Composite Concrete Structure Subjected to Reactive Jet [J]. Acta Armamentarii, 2024, 45(S1): 135-146. |
[8] | WANG Yajun, YU Rui, LI Weibing, LI Wenbin. Research on the Penetration Characteristics of Rod-shaped EFP and Its Influencing Factors [J]. Acta Armamentarii, 2024, 45(S1): 174-182. |
[9] | XU Yueyue, ZHANG Xiangrong, GAO Jiale, LIU Zhanwei, MIAO Feichao, LIU Pan, ZHOU Lin. Mechanical Properties and Failure Criteria of DNP-based Melt-cast Explosives [J]. Acta Armamentarii, 2024, 45(9): 3114-3124. |
[10] | SUN Hao, LI Haiqing, LIANG Yan, MA Chaoxiong, WU Han. Dynamic Penetration Decision of Loitering Munition Group Based on Knowledge-assisted Reinforcement Learning [J]. Acta Armamentarii, 2024, 45(9): 3161-3176. |
[11] | CHEN Baihan, ZHAO Shengwei, ZOU Huihui, WANG Weiguang, DAI Xianghui, WANG Kehui. Research Progress of Overload Signal Characteristics and Processing Technologies of Penetrating Projectile [J]. Acta Armamentarii, 2024, 45(9): 2906-2928. |
[12] | DONG Heng, HUANG Fenglei, WU Haijun, DENG Ximin, LI Meng, LIU Longlong. Penetration and Perforation Mechanism of High-speed Non-circular Projectilesa: A State-of-the-Art Review [J]. Acta Armamentarii, 2024, 45(9): 2863-3887. |
[13] | WANG Yifan, LI Yongpeng, XU Yuxin, LIU Tielei, JIAO Xiaolong, WANG Ruosu. Penetration Effect of Tungsten Alloy Spherical Projectile on CFRP-coated B4C Ceramics [J]. Acta Armamentarii, 2024, 45(8): 2487-2496. |
[14] | ZUO Mingshuo, XU Yuxin, LI Yongpeng, LI Xudong, GUO Delong, YANG Xiang. Dynamic Response of Directional Blast Relief Container Structure for Civil Aircraft under Internal Explosive Loading [J]. Acta Armamentarii, 2024, 45(7): 2383-2392. |
[15] | ZHANG An, LI Changsheng, ZHANG He, MA Shaojie, YANG Benqiang. Experimental Study on IPM for Buffering and Energy Absorption [J]. Acta Armamentarii, 2024, 45(7): 2260-2269. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||