Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (8): 2629-2645.doi: 10.12382/bgxb.2023.0620
Previous Articles Next Articles
LU Hang1,2, LIU Haoran1,3, CHEN Tairan1,3,*(), HUANG Biao1,3, WANG Guoyu1,3, CHEN Huiyan1
Received:
2023-07-03
Online:
2023-11-06
Contact:
CHEN Tairan
CLC Number:
LU Hang, LIU Haoran, CHEN Tairan, HUANG Biao, WANG Guoyu, CHEN Huiyan. Experimental and Numerical Study on Navigation Characteristics of Waterjet Propulsion Amphibian Vehicle[J]. Acta Armamentarii, 2024, 45(8): 2629-2645.
Add to citation manager EndNote|Ris|BibTeX
参数 | 数值 |
---|---|
两栖车总长L/m | 2.14 |
两栖车总宽B/m | 0.87 |
两栖车高/m | 0.52 |
两栖车质量M/kg | 240.05 |
喷水推进器叶轮直径/mm | 149.5 |
喷水推进器喷口直径/mm | 105 |
喷水推进器转速/(r·min-1) | 2286 |
喷水推进器流量/(m3·s-1) | 0.108 |
喷水推进器扬程/m | 7.12 |
喷水推进器叶轮叶片数 | 6 |
喷水推进器导叶叶片数 | 8 |
Table 1 Parameters of amphibious vehicle and waterjet propulsor
参数 | 数值 |
---|---|
两栖车总长L/m | 2.14 |
两栖车总宽B/m | 0.87 |
两栖车高/m | 0.52 |
两栖车质量M/kg | 240.05 |
喷水推进器叶轮直径/mm | 149.5 |
喷水推进器喷口直径/mm | 105 |
喷水推进器转速/(r·min-1) | 2286 |
喷水推进器流量/(m3·s-1) | 0.108 |
喷水推进器扬程/m | 7.12 |
喷水推进器叶轮叶片数 | 6 |
喷水推进器导叶叶片数 | 8 |
名称 | 参数 | 量程 | 精度 |
---|---|---|---|
拖车 | 速度/(m·s-1) | 0.1~8.0 | 0.001 |
阻力传感器 | 力/N | 1000 | 0.0005 |
三向测力天平 | 力/N | 500 | 0.001 |
纵摇传感器 | 角度/(°) | 45 | 0.1 |
升沉传感器 | 升沉值/mm | 800 | 0.1 |
转矩转速功率 测量仪 | 转矩/(N·m) 转速/(r·min-1) | -99999~99999 0~20000 | 不超过 ±0.5%FS |
Table 2 Test bench instrument and equipment parameters
名称 | 参数 | 量程 | 精度 |
---|---|---|---|
拖车 | 速度/(m·s-1) | 0.1~8.0 | 0.001 |
阻力传感器 | 力/N | 1000 | 0.0005 |
三向测力天平 | 力/N | 500 | 0.001 |
纵摇传感器 | 角度/(°) | 45 | 0.1 |
升沉传感器 | 升沉值/mm | 800 | 0.1 |
转矩转速功率 测量仪 | 转矩/(N·m) 转速/(r·min-1) | -99999~99999 0~20000 | 不超过 ±0.5%FS |
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
G1/104 | 2082 | T1/s | 0.007 |
G2/104 | 1150 | T2/s | 0.005 |
G3/104 | 426 | T3/s | 0.0035 |
Table 4 Number of grids and time step size under different accuracies
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
G1/104 | 2082 | T1/s | 0.007 |
G2/104 | 1150 | T2/s | 0.005 |
G3/104 | 426 | T3/s | 0.0035 |
航行条件 | 网格与时间步 | 参数 | S1 | S2 | S3 | γ | p | USN[S1%] |
---|---|---|---|---|---|---|---|---|
拖曳 | 网格 | Cd | 0.0309 | 0.031 | 0.0316 | 0.167 | 2.585 | 1.786 |
时间步 | Cd | 0.0308 | 0.031 | 0.0322 | 0.0167 | 2.585 | 3.584 | |
约束自航 | 网格 | H* | 2.166 | 2.157 | 2.146 | 0.8182 | 0.290 | 4.121 |
Qrel | 0.975 | 0.969 | 0.948 | 0.286 | 1.807 | 3.653 | ||
时间步 | H* | 2.172 | 2.157 | 2.137 | 0.75 | 0.415 | 4.345 | |
Qrel | 0.977 | 0.969 | 0.938 | 0.258 | 1.954 | 4.913 |
Table 5 Grid and time step uncertainty calculation
航行条件 | 网格与时间步 | 参数 | S1 | S2 | S3 | γ | p | USN[S1%] |
---|---|---|---|---|---|---|---|---|
拖曳 | 网格 | Cd | 0.0309 | 0.031 | 0.0316 | 0.167 | 2.585 | 1.786 |
时间步 | Cd | 0.0308 | 0.031 | 0.0322 | 0.0167 | 2.585 | 3.584 | |
约束自航 | 网格 | H* | 2.166 | 2.157 | 2.146 | 0.8182 | 0.290 | 4.121 |
Qrel | 0.975 | 0.969 | 0.948 | 0.286 | 1.807 | 3.653 | ||
时间步 | H* | 2.172 | 2.157 | 2.137 | 0.75 | 0.415 | 4.345 | |
Qrel | 0.977 | 0.969 | 0.938 | 0.258 | 1.954 | 4.913 |
[1] |
|
[2] |
|
[3] |
彭锟. 基于代理模型的两栖车辆外形减阻优化方法研究[D]. 北京: 北京理工大学, 2015.
|
|
|
[4] |
杨楚泉. 水陆两栖车辆原理与设计[M]. 北京: 国防工业出版社, 2003.
|
|
|
[5] |
王野, 陈慧岩, 汪泰霖, 等. 矢量喷水推进两栖车航行姿态的数值及试验分析[J]. 兵工学报, 2022, 43(12): 3172-3185.
|
|
|
[6] |
刘淑艳, 陈长秋, 闫为革, 等. 改进设计的两栖车辆水上性能试验研究[J]. 北京理工大学学报, 2003, 23(1): 34-37, 41.
|
|
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
孙承亮, 徐小军, 唐源江, 等. 分段履带式水陆两栖车减阻增速试验及数值仿真[J]. 国防科技大学学报, 2022, 44(5): 201-208.
|
|
|
[12] |
剧冬梅, 项昌乐, 周鹏飞, 等. 纵倾角对轻型轮式两栖车辆的阻力特性影响研究[J]. 兵工学报, 2015, 36(1): 19-26.
doi: 10.3969/j.issn.1000-1093.2015.01.003 |
|
|
[13] |
赵彬, 张敏弟, 剧冬梅. 基于动网格的两栖车航行姿态数值模拟[J]. 兵工学报, 2015, 36(3): 412-420.
doi: 10.3969/j.issn.1000-1093.2015.03.005 |
doi: 10.3969/j.issn.1000-1093.2015.03.005 |
|
[14] |
王少新, 王涵, 金国庆, 等. 水陆两栖车水动力性能与防浪板受力特性研究[J]. 兵器装备工程学报, 2020, 41(1): 1-6.
|
|
|
[15] |
周利兰, 张乐乐. 两栖车航行阻力特性的数值研究[J]. 华南理工大学学报: 自然科学版, 2021, 49(12): 133-142.
|
|
|
[16] |
|
[17] |
|
[18] |
|
[19] |
仝博, 王永生, 杨琼方, 等. 喷水推进高速三体滑行艇数值自航研究[J]. 船舶力学, 2018, 22(7): 789-796.
|
|
|
[20] |
|
[21] |
|
[22] |
|
[23] |
宗鸿运. 船舶横摇阻尼及运动响应降阶预报方法研究[D]. 大连: 大连理工大学, 2021.
|
|
|
[24] |
|
[25] |
|
[26] |
王涛, 徐国英, 郭齐胜. 两栖车辆水上动态性能数值模拟方法及其应用[M]. 北京: 国防工业出版社, 2009.
|
|
|
[27] |
|
[28] |
|
[29] |
|
[30] |
International Towing Tank Conference.Uncertainty analysis in CFD, verification and validation methodology and procedures[C]//Proceeding of the 28th International Towing Tank Conference. Wuxi, China: International Towing Tank Conference, 2017.
|
[31] |
|
[1] | GUO Junting, YU Yonggang. Complex Flow Field Characteristics inside Combustion Chamber During the Secondary Ignition Process of CTA [J]. Acta Armamentarii, 2024, 45(7): 2282-2293. |
[2] | CHEN Tairan, GENG Hao, WANG Dian, QIU Sicong, SUN Xuguang. Research on the Real-time Simulation System for Hydrodynamic Characteristics of Amphibious Vehicle [J]. Acta Armamentarii, 2024, 45(5): 1402-1415. |
[3] | YAN Zechen, YUE Songlin, QIU Yanyu, WANG Jianping, ZHAO Yuetang, SHI Jie, LI Xu. Improvement on the Calculation Method for Reflected Pressure of Shock Wave in Underwater Explosion [J]. Acta Armamentarii, 2024, 45(4): 1196-1207. |
[4] | LI Jing, SUN Xiaoxia, MA Xinglong, ZHU Wenxiang. Heat Transfer and Flow Characteristics of Open-cell Metal Foams [J]. Acta Armamentarii, 2024, 45(1): 122-130. |
[5] | LEI Juanmian, GAO Yi, YONG Zheng. Numerical Investigation of the Jet Interference Characteristics of a Lateral-jet-controlled Spinning Missile [J]. Acta Armamentarii, 2024, 45(1): 105-121. |
[6] | WANG Xinyu, JIANG Chunlan, WANG Zaicheng, FANG Yuande. Research on the Pressure Relief Structure of JEO Shaped Charge Warhead during Cook-off [J]. Acta Armamentarii, 2024, 45(1): 1-14. |
[7] | LEI Te, WU Yuwen, XU Gao, QIU Yanming, KANG Chaohui, WENG Chunsheng. Study on Three-dimensional Rotating Detonation Flow Field Structures Based on Large Eddy Simulation [J]. Acta Armamentarii, 2024, 45(1): 85-96. |
[8] | ZHOU Guangpan, WANG Rong, WANG Mingyang, DING Jianguo, ZHANG Guokai. Experiment and Numerical Simulation of Explosion Resistance Performance of Main Girder of Self-anchored Suspension Bridge Coated with Polyurea [J]. Acta Armamentarii, 2023, 44(S1): 9-25. |
[9] | KOU Yongfeng, YANG Kun, ZHANG Bin, XIAO Yiwen, LU Jianying, CHEN Lang. Research on Thermal Safety of Warhead Charge Based on Cook-off Experimental and Numerical Simulation [J]. Acta Armamentarii, 2023, 44(S1): 41-49. |
[10] | YU Shuangyang, PENG Yong. Numerical Simulation of Temperature Rise of 4340 Steel Projectile Penetrating into 45# Steel Target [J]. Acta Armamentarii, 2023, 44(S1): 144-151. |
[11] | YU Wenjun, CHEN Shengyun, DENG Shuxin, YU Bingbing, JIN Dongyan. Numerical Simulation of the Propagation Law of Explosion Shock Wave in Turning Tunnel [J]. Acta Armamentarii, 2023, 44(S1): 180-188. |
[12] | DU Yonggang, WANG Xuesong, WAN Zhihua. Study of Screw Drive Failure Mechanisms in a Flight Aid Carrier [J]. Acta Armamentarii, 2023, 44(7): 2033-2040. |
[13] | GAO Tiesuo, JIANG Tao, FU Yang’aoxiao, DING Mingsong, LIU Qingzong, DONG Weizhong, XU Yong, LI Peng. Plasma Distribution and Its Effect on Electromagnetic Wave Transmission across Vehicles of Varying Sizes [J]. Acta Armamentarii, 2023, 44(6): 1809-1819. |
[14] | LIU Weizhao, LI Rong, NIU Lanjie, SHI Kunlin. Research Status and Prospect of Hard-Target Penetration Initiation Control Technology [J]. Acta Armamentarii, 2023, 44(6): 1602-1619. |
[15] | ZOU Guangping, WU Songyang, XU Shubo, CHANG Zhongliang, WANG Xuan. Dynamic Compressive Properties of Graphene/Ceramic Particle Reinforced Polyurethane-Based Composites [J]. Acta Armamentarii, 2023, 44(3): 728-735. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||