Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (6): 1813-1823.doi: 10.12382/bgxb.2023.0227
Previous Articles Next Articles
WANG Xiaolong1,2, CHEN Yang1,2,*(), HU Mian1,2, LI Xudong1,2
Received:
2023-03-20
Online:
2023-07-15
Contact:
CHEN Yang
CLC Number:
WANG Xiaolong, CHEN Yang, HU Mian, LI Xudong. Robot Path Planning for Persistent Monitoring Based on Improved Deep Q Networks[J]. Acta Armamentarii, 2024, 45(6): 1813-1823.
Add to citation manager EndNote|Ris|BibTeX
算法 | 平均剩余寿命/min | 监测延迟熵 |
---|---|---|
改进DQN算法 | 689.2 | 44.52 |
传统DQN算法 | 699 | 14.29 |
TSP算法 | 693.0 | 11.75 |
Table 1 Data comparison of three algorithms
算法 | 平均剩余寿命/min | 监测延迟熵 |
---|---|---|
改进DQN算法 | 689.2 | 44.52 |
传统DQN算法 | 699 | 14.29 |
TSP算法 | 693.0 | 11.75 |
决策 周期 | 传统DQN算法 | 改进DQN算法 | 监测延迟 熵上界 | |||
---|---|---|---|---|---|---|
平均剩余 寿命/min | 监测延 迟熵 | 平均剩余 寿命/min | 监测延 迟熵 | |||
2000 | 1807.2 | 104.8 | 1666.2 | 111.0 | 133.6 | |
4000 | 1806.5 | 93.2 | 1682.2 | 124.7 | 156.6 | |
6000 | 1806.2 | 85.0 | 1682.5 | 128.9 | 169.8 | |
8000 | 1806.1 | 79.6 | 1682.5 | 134.6 | 179.4 | |
10000 | 1806.0 | 76.0 | 1681.2 | 133.2 | 186.7 | |
12000 | 1805.9 | 73.5 | 1678.9 | 141.9 | 192.8 | |
14000 | 1805.9 | 71.6 | 1681.2 | 141.4 | 197.9 | |
16000 | 1805.9 | 70.0 | 1679.4 | 141.9 | 202.3 | |
18000 | 1805.9 | 68.8 | 1680.6 | 139.7 | 206.2 | |
20000 | 1805.9 | 67.8 | 1680.6 | 143.2 | 209.7 |
Table 2 Data comparison of complex road network
决策 周期 | 传统DQN算法 | 改进DQN算法 | 监测延迟 熵上界 | |||
---|---|---|---|---|---|---|
平均剩余 寿命/min | 监测延 迟熵 | 平均剩余 寿命/min | 监测延 迟熵 | |||
2000 | 1807.2 | 104.8 | 1666.2 | 111.0 | 133.6 | |
4000 | 1806.5 | 93.2 | 1682.2 | 124.7 | 156.6 | |
6000 | 1806.2 | 85.0 | 1682.5 | 128.9 | 169.8 | |
8000 | 1806.1 | 79.6 | 1682.5 | 134.6 | 179.4 | |
10000 | 1806.0 | 76.0 | 1681.2 | 133.2 | 186.7 | |
12000 | 1805.9 | 73.5 | 1678.9 | 141.9 | 192.8 | |
14000 | 1805.9 | 71.6 | 1681.2 | 141.4 | 197.9 | |
16000 | 1805.9 | 70.0 | 1679.4 | 141.9 | 202.3 | |
18000 | 1805.9 | 68.8 | 1680.6 | 139.7 | 206.2 | |
20000 | 1805.9 | 67.8 | 1680.6 | 143.2 | 209.7 |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
李凯文, 张涛, 王锐, 等. 基于深度强化学习的组合优化研究进展[J]. 自动化学报, 2021, 47(11): 2521-2537
|
|
|
[20] |
|
[21] |
|
[1] | PAN Zuodong, ZHOU Yue, GUO Wei, XU Gaofei, SUN Yu. Path Planning of Tidal Flat Tracked Vehicle Based on CB-RRT* Algorithm [J]. Acta Armamentarii, 2024, 45(4): 1117-1128. |
[2] | LI Song, MA Zhuangzhuang, ZHANG Yunlin, SHAO Jinliang. Multi-agent Coverage Path Planning Based on Security Reinforcement Learning [J]. Acta Armamentarii, 2023, 44(S2): 101-113. |
[3] | JU Shuang, WANG Jing, WANG Hao, ZHOU Meng. Formation Reconfiguration Control of Multiple Mobile Robots with Severe Actuator Faults Based on GWO-WOA [J]. Acta Armamentarii, 2023, 44(S2): 114-125. |
[4] | CAO Zijian, SUN Zelong, YAN Guochuang, FU Yanfang, YANG Bo, LI Qinjie, LEI Kailin, GAO Linghang. Simulation of Reinforcement Learning-based UAV Swarm Adversarial Strategy Deduction [J]. Acta Armamentarii, 2023, 44(S2): 126-134. |
[5] | LU Ying, PANG Lichen, CHEN Yusi, SONG Wanying, FU Yanfang. A Swarm Intelligence Algorithm for UAV Path Planning in Urban Warfare [J]. Acta Armamentarii, 2023, 44(S2): 146-156. |
[6] | YANG Jiaxiu, LI Xinkai, ZHANG Hongli, WANG Hao. Robust Tracking of Quadrotor UAVs Based on Integral Reinforcement Learning [J]. Acta Armamentarii, 2023, 44(9): 2802-2813. |
[7] | SU Bo, JIANG Lei, LIU Yufei, XING Boyang, LI Yongyao, TAN Senqi, WANG Zhirui. A Review of Key Technologies for Cross-domain and Trans-medium of Mobile Robotics [J]. Acta Armamentarii, 2023, 44(9): 2556-2567. |
[8] | ZHANG Jiandong, WANG Dinghan, YANG Qiming, SHI Guoqing, LU Yi, ZHANG Yaozhong. Multi-Dimensional Decision-Making for UAV Air Combat Based on Hierarchical Reinforcement Learning [J]. Acta Armamentarii, 2023, 44(6): 1547-1563. |
[9] | LI Chao, WANG Ruixing, HUANG Jianzhong, JIANG Feilong, WEI Xuemei, SUN Yanxin. Autonomous Decision-making and Intelligent Collaboration of UAV Swarms Based on Reinforcement Learning with Sparse Rewards [J]. Acta Armamentarii, 2023, 44(6): 1537-1546. |
[10] | ZHENG Zexin, LI Wei, ZOU Kun, LI Yanfu. Anti-jamming Waveform Design of Ground-based Air Surveillance Radar Based on Reinforcement Learning [J]. Acta Armamentarii, 2023, 44(5): 1422-1430. |
[11] | YIN Yiyi, WANG Xiaofang, ZHOU Jian. Q-Learning-based Multi-UAV Cooperative Path Planning Method [J]. Acta Armamentarii, 2023, 44(2): 484-495. |
[12] | LI Jiajian, SHI Yanjun, YANG Yu, LI Bo, ZHAO Xijun. Multi-agent Reinforcement Learning-based Offloading Decision for UAV Cluster Combat Tasks [J]. Acta Armamentarii, 2023, 44(11): 3295-3309. |
[13] | FU Jinbo, ZHANG Dong, WANG Mengyang, ZHAO Junmin. Unmanned Aerial Vehicle Path Planning for Improved Target Positioning Accuracy [J]. Acta Armamentarii, 2023, 44(11): 3394-3406. |
[14] | WANG Kang, SI Peng, CHEN Li, LI Zhongxin, WU Zhilin. 3D Path Planning of Unmanned Aerial Vehicle Based on Enhanced Sand Cat Swarm Optimization Algorithm [J]. Acta Armamentarii, 2023, 44(11): 3382-3393. |
[15] | SHANG Zhe, WANG Ting, XU Yao, WU Yingbiao, SHAO Peiyao, SHAO Shiliang. Structural Design and Obstacle-surmounting Dynamics Research of Six-wheeled Rocker-type Mobile Robot [J]. Acta Armamentarii, 2023, 44(11): 3478-3488. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||