Acta Armamentarii ›› 2023, Vol. 44 ›› Issue (1): 165-175.doi: 10.12382/bgxb.2022.0811
Special Issue: 特种车辆理论与技术
Previous Articles Next Articles
CHEN Jianwei, YU Chuanqiang*(), LIU Zhihao, TANG Shengjin(
), ZHANG Zhihao, SHU Hongbin
Received:
2022-09-13
Online:
2022-12-27
Contact:
YU Chuanqiang
CLC Number:
CHEN Jianwei, YU Chuanqiang, LIU Zhihao, TANG Shengjin, ZHANG Zhihao, SHU Hongbin. Data Modeling of Multi-Axle Special Vehicles and Lateral Dynamics Applications[J]. Acta Armamentarii, 2023, 44(1): 165-175.
Add to citation manager EndNote|Ris|BibTeX
超参数 | 数值 |
---|---|
GRU层数 | 1 |
输出层维度 | 150 |
输入序列长度 | 1 |
Table 1 GRU module parameters
超参数 | 数值 |
---|---|
GRU层数 | 1 |
输出层维度 | 150 |
输入序列长度 | 1 |
超参数 | 数值 |
---|---|
FNN层数 | 2 |
第1层维度 | 150×150 |
第1层激活函数 | Tanh激活函数 |
第2层维度 | 150×2 |
第2层激活函数 | 无 |
Table 2 FNN module parameters
超参数 | 数值 |
---|---|
FNN层数 | 2 |
第1层维度 | 150×150 |
第1层激活函数 | Tanh激活函数 |
第2层维度 | 150×2 |
第2层激活函数 | 无 |
工况 | 均方根误差 | 最大误差 |
---|---|---|
侧向加速度/g | 0.0023 | 0.0735 |
横摆角速度/(°·s-1) | 0.0359 | 3.6006 |
Table 3 Trucksim model error
工况 | 均方根误差 | 最大误差 |
---|---|---|
侧向加速度/g | 0.0023 | 0.0735 |
横摆角速度/(°·s-1) | 0.0359 | 3.6006 |
参数 | 数值 |
---|---|
簧载质量ms/kg | 50200 |
转向系传动比τ | 24.6 |
绕z轴转动惯量Iz/(kg·m2) | 734251 |
绕侧倾轴转动惯量Ix/(kg·m2) | 230700 |
质心高度hc/m | 1.4 |
轮胎半径rw/m | 0.55 |
悬架等效侧倾刚度Ks/(N·m/rad) | 2000000 |
悬架等效阻尼系数Cs/(N·m·s/rad) | 120000 |
Table 4 Trucksim simulated vehicle parameters
参数 | 数值 |
---|---|
簧载质量ms/kg | 50200 |
转向系传动比τ | 24.6 |
绕z轴转动惯量Iz/(kg·m2) | 734251 |
绕侧倾轴转动惯量Ix/(kg·m2) | 230700 |
质心高度hc/m | 1.4 |
轮胎半径rw/m | 0.55 |
悬架等效侧倾刚度Ks/(N·m/rad) | 2000000 |
悬架等效阻尼系数Cs/(N·m·s/rad) | 120000 |
模型 | 标准差 | 最大值/ (km·h-1) | 平均值/ (km·h-1) |
---|---|---|---|
线性化横向模型 | 0.035 | 0.233 | 0.061 |
开环训练模型 | 0.012 | 0.103 | 0.017 |
闭环训练模型 | 0.007 | 0.079 | 0.006 |
Table 5 Statistical analysis of lateral velocity
模型 | 标准差 | 最大值/ (km·h-1) | 平均值/ (km·h-1) |
---|---|---|---|
线性化横向模型 | 0.035 | 0.233 | 0.061 |
开环训练模型 | 0.012 | 0.103 | 0.017 |
闭环训练模型 | 0.007 | 0.079 | 0.006 |
模型 | 标准差 | 最大值/ ((°)·s-1) | 平均值/ ((°)·s-1) |
---|---|---|---|
线性化横向模型 | 0.283 | 0.885 | 0.514 |
开环训练 | 0.073 | 0.677 | 0.144 |
闭环训练 | 0.041 | 0.342 | 0.056 |
Table 6 Statistical analysis of yaw rate error
模型 | 标准差 | 最大值/ ((°)·s-1) | 平均值/ ((°)·s-1) |
---|---|---|---|
线性化横向模型 | 0.283 | 0.885 | 0.514 |
开环训练 | 0.073 | 0.677 | 0.144 |
闭环训练 | 0.041 | 0.342 | 0.056 |
参数 | 数值 |
---|---|
整车质量m/kg | 50200 |
1轴至质心距离L1/m | 5.7 |
2轴至质心距离L2/m | 3.2 |
3轴至质心距离L3/m | 1.1 |
4轴至质心距离L4/m | 3.4 |
5轴至质心距离L5/m | 5.9 |
绕z轴转动惯量Iz/(kg·m2) | 734251 |
传动比η | 28 |
各轴轮胎侧偏刚度C/(N·rad-1) | 300000 |
时间间隔T/s | 0.01 |
Table A-1 Linearized lateral dynamics model parameters
参数 | 数值 |
---|---|
整车质量m/kg | 50200 |
1轴至质心距离L1/m | 5.7 |
2轴至质心距离L2/m | 3.2 |
3轴至质心距离L3/m | 1.1 |
4轴至质心距离L4/m | 3.4 |
5轴至质心距离L5/m | 5.9 |
绕z轴转动惯量Iz/(kg·m2) | 734251 |
传动比η | 28 |
各轴轮胎侧偏刚度C/(N·rad-1) | 300000 |
时间间隔T/s | 0.01 |
[1] |
陈慧岩, 陈舒平, 龚建伟. 智能汽车横向控制方法研究综述[J]. 兵工学报, 2017, 38(6):1203-1214.
doi: 10.3969/j.issn.1000-1093.2017.06.021 |
|
|
[2] |
张超朋, 刘庆霄, 董昊天, 等. 无人驾驶履带车辆机电联合制动的协调控制[J]. 兵工学报, 2022, 43(11):2727-2737.
|
|
|
[3] |
李春明, 吴维, 郭智蔷, 等. 履带车辆纵向与垂向耦合动力学模型及功率特性[J]. 兵工学报, 2021, 42(3):449-458.
doi: 10.3969/j.issn.1000-1093.2021.03.001 |
doi: 10.3969/j.issn.1000-1093.2021.03.001 |
|
[4] |
王博洋, 关海杰, 龚建伟, 等. 面向异构履带车辆的统一运动规划方法[J]. 兵工学报, 2022, 43(2):241-251.
|
doi: 10.3969/j.issn.1000-1093.2022.02.001 |
|
[5] |
刘志浩, 高钦和, 刘准, 等. 重载轮胎面内刚柔耦合动力学建模及振动传递特性分析[J]. 兵工学报, 2018, 39(2):224-233.
doi: 10.3969/j.issn.1000-1093.2018.02.003 |
|
|
[6] |
陈鼎, 侯亮, 祝青园, 等. 考虑轮胎几何与胎压因素的轮地相互作用力模型及其参数辨识[J]. 机械工程学报, 2020, 56(2):174-183.
doi: 10.3901/JME.2020.02.174 |
doi: 10.3901/JME.2020.02.174 |
|
[7] |
许男, 周健锋, 郭孔辉, 等. 胎压载荷耦合效应下复合工况UniTire轮胎模型[J]. 机械工程学报, 2020, 56(16):193-203.
doi: 10.3901/JME.2020.16.193 |
doi: 10.3901/JME.2020.16.193 |
|
[8] |
王珍, 项昌乐, 刘辉, 等. 基于集中-分布参数模型的车辆机电传动系统动力学响应及影响规律[J]. 兵工学报, 2021, 42(10):2145-2158.
doi: 10.3969/j.issn.1000-1093.2021.10.010 |
|
|
[9] |
李睿, 项昌乐, 王超, 等. 自动驾驶履带车辆鲁棒自适应轨迹跟踪控制方法[J]. 兵工学报, 2021, 42(6):1128-1137.
doi: 10.3969/j.issn.1000-1093.2021.06.002 |
|
|
[10] |
郭弘明, 席军强, 陈慧岩, 等. 电驱动无人履带车辆线控机电联合制动技术研究[J]. 兵工学报, 2019, 40(6):1130-1136.
doi: 10.3969/j.issn.1000-1093.2019.06.002 |
doi: 10.3969/j.issn.1000-1093.2019.06.002 |
|
[11] |
邹渊, 张彬, 张旭东, 等. 基于归一化优势函数的强化学习混合动力履带车辆能量管理[J]. 兵工学报, 2021, 42(10):2159-2169.
|
doi: 10.3969/j.issn.1000-1093.2021.10.011 |
|
[12] |
王博洋, 龚建伟, 张瑞增, 等. 基于真实驾驶数据的运动基元提取与再生成[J]. 机械工程学报, 2020, 56(16):155-165.
doi: 10.3901/JME.2020.16.155 |
doi: 10.3901/JME.2020.16.155 |
|
[13] |
江昕炜, 陈龙, 华一丁, 等. 基于改进型ELM的熟练驾驶员行车轨迹拟合方法研究[J]. 汽车工程, 2021, 43(11):1620-1630.
|
|
|
[14] |
doi: 10.1016/j.measurement.2021.109541 URL |
[15] |
doi: 10.1080/00423114.2018.1564834 URL |
[16] |
doi: 10.1504/IJVD.2010.034101 URL |
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
doi: 10.1016/j.neunet.2021.02.011 pmid: 33662649 |
[1] | LIU Mengzhen, HUANG Guangyan, ZHANG Hong, ZHOU Hongyuan, LIU Siyu. Protective Material Crease Detection with Small Sample-driven Feature Segmented Neural Network [J]. Acta Armamentarii, 2024, 45(3): 963-974. |
[2] | QIN Guohua, LOU Weida, LIN Feng, XU Yong. A Novel Method of Stability Judgment and Milling Parameter Optimization Based on Cotes Integration Method and Neural Network [J]. Acta Armamentarii, 2024, 45(2): 516-526. |
[3] | LIU Chang, LEI Hongbo, LIN Shiyao, FAN Shipeng, WANG Jiang. Firing Data Calculation Method for Laser Terminal Guidance Projectile Based on Multi-model Network [J]. Acta Armamentarii, 2023, 44(9): 2745-2755. |
[4] | ZHANG Kaige, LU Zhigang, NIE Tianchang, LI Zhiwei, GUO Yuqiang. Analysis of Soft Intelligent Edge Computing Technologies for Unmanned Systems [J]. Acta Armamentarii, 2023, 44(9): 2611-2621. |
[5] | ZHOU Yu, CAO Ronggang, LI Ping, MA Xiao. A Fuze Burst Point Detection Method for Outfield Test Images [J]. Acta Armamentarii, 2023, 44(8): 2453-2464. |
[6] | WU Liyang, GUO Pengcheng, LIU Chao, LI Wenqiang. Radar Signal Modulation Type Recognition Based on Attention Mechanism Enhanced Residual Networks [J]. Acta Armamentarii, 2023, 44(8): 2310-2318. |
[7] | XIE Baoqi, LI Yingshun, WANG Debiao, SUI Huanhuan. Method for Evaluating Tank Gunner’s Sight System [J]. Acta Armamentarii, 2023, 44(8): 2414-2423. |
[8] | LIU Yi, REN Jihuan, WU Xiang, BO Yuming. Newly Equipped Armored Vehicle Classification Based on Integrated Transfer Learning [J]. Acta Armamentarii, 2023, 44(8): 2319-2328. |
[9] | SONG Qiuyu, HU Jian, YAO Jianyong, BAI Yanchun, YANG Zhengyin. Output Feedback Control for Launch Platform Using Neural Network Observer and Output Constraint [J]. Acta Armamentarii, 2023, 44(7): 2184-2196. |
[10] | HUA Yingjie, LIU Jing, SHAO Yubin, DUO Lin. Language Identification in Battlefield Environments [J]. Acta Armamentarii, 2023, 44(7): 2197-2206. |
[11] | HE Jincheng, HAN Yongcheng, ZHANG Wenwen, HE Weiji, CHEN Qian. True Color Low-Light Image Enhancement Based on Channel-Calibrated Convolution [J]. Acta Armamentarii, 2023, 44(6): 1643-1654. |
[12] | LIU Jia, LIU Hai’ou, CHEN Huiyan, MAO Feihong. Road Types Identification Method of Unmanned Tracked Vehicles Based on Fusion Features [J]. Acta Armamentarii, 2023, 44(5): 1267-1276. |
[13] | TAO Lei, LIU Jianhua, XIA Huanxiong, AO Xiaohui, GAO Feng. Temperature Field Prediction of Melt-cast Explosives Based on a B-spline Neural Network [J]. Acta Armamentarii, 2023, 44(5): 1339-1349. |
[14] | WANG Jian, ZHANG Bangning, ZHANG Jie, WEI Guofeng, GUO Daoxing. A Method for Specific Communication Emitter Identification Based on Multi-Domain Feature Fusion [J]. Acta Armamentarii, 2023, 44(4): 949-959. |
[15] | TIAN Ke. Prediction of Projectile Muzzle Velocity Based on Neural Network Algorithm Combined with Clustering Association Rules [J]. Acta Armamentarii, 2023, 44(2): 452-461. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||