Acta Armamentarii ›› 2023, Vol. 44 ›› Issue (2): 452-461.doi: 10.12382/bgxb.2021.0687
Previous Articles Next Articles
TIAN Ke
Received:
2021-10-18
Online:
2022-06-10
CLC Number:
TIAN Ke. Prediction of Projectile Muzzle Velocity Based on Neural Network Algorithm Combined with Clustering Association Rules[J]. Acta Armamentarii, 2023, 44(2): 452-461.
Add to citation manager EndNote|Ris|BibTeX
左侧 规则 | 右侧 规则 | 支持度 | 置信度 | 提升度 | 样本 数量 |
---|---|---|---|---|---|
{A4} | {好} | 0.2661290 | 0.8684211 | 1.066180 | 33 |
{A2} | {好} | 0.3145161 | 1.0000000 | 1.227723 | 39 |
Table 1 Results of Apriori algorithm for association rule mining
左侧 规则 | 右侧 规则 | 支持度 | 置信度 | 提升度 | 样本 数量 |
---|---|---|---|---|---|
{A4} | {好} | 0.2661290 | 0.8684211 | 1.066180 | 33 |
{A2} | {好} | 0.3145161 | 1.0000000 | 1.227723 | 39 |
Fig.10 Visibility graph of correlation coefficient between left positive, back positive, initial velocity of Radar A and initial velocity of Radar B in combined samples
神经 元 | 输入1 | 输入2 | 输入3 | 阈值 |
---|---|---|---|---|
1 | 28.1432000 | -6.1436770 | 8.7983940 | 44.7162829 |
2 | 14.5432400 | -6.4585750 | 8.6515020 | 4.0440836 |
3 | 18.5108700 | 3.5425780 | 1.7351020 | -3.0232857 |
4 | 20.6268800 | 3.0062510 | 2.6938990 | -3.8635498 |
5 | -22.2357100 | 1.1870900 | 13.6750550 | 0.3672449 |
6 | 19.0408800 | -15.0458720 | 17.6933350 | 8.8356581 |
Table 2 Weights and thresholds from input layer to hidden layer of combined sample neural network
神经 元 | 输入1 | 输入2 | 输入3 | 阈值 |
---|---|---|---|---|
1 | 28.1432000 | -6.1436770 | 8.7983940 | 44.7162829 |
2 | 14.5432400 | -6.4585750 | 8.6515020 | 4.0440836 |
3 | 18.5108700 | 3.5425780 | 1.7351020 | -3.0232857 |
4 | 20.6268800 | 3.0062510 | 2.6938990 | -3.8635498 |
5 | -22.2357100 | 1.1870900 | 13.6750550 | 0.3672449 |
6 | 19.0408800 | -15.0458720 | 17.6933350 | 8.8356581 |
神经元 | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
输出层 | 0.33721577 | 0.01783879 | 37.37517928 | 37.14605252 | -18.66516705 | 0.21881953 |
Table 3 Weights from hidden layer to output layer of combined sample neural network
神经元 | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
输出层 | 0.33721577 | 0.01783879 | 37.37517928 | 37.14605252 | -18.66516705 | 0.21881953 |
弹序 | 实测值 | 神经网络预测值 | SVR预测值 |
---|---|---|---|
1 | 92.24 | 92.26248 | 93.79947 |
2 | 91.61 | 91.56277 | 93.84397 |
3 | 91.95 | 91.84691 | 93.81447 |
4 | 91.94 | 91.93622 | 93.80780 |
5 | 91.48 | 91.27619 | 93.88130 |
Table 4 Measured values and neural network predicted values of the 1st ~ 5th rounds of Radar B
弹序 | 实测值 | 神经网络预测值 | SVR预测值 |
---|---|---|---|
1 | 92.24 | 92.26248 | 93.79947 |
2 | 91.61 | 91.56277 | 93.84397 |
3 | 91.95 | 91.84691 | 93.81447 |
4 | 91.94 | 91.93622 | 93.80780 |
5 | 91.48 | 91.27619 | 93.88130 |
弹序 | 实测值 | 神经网络预测值 | SVR预测值 |
---|---|---|---|
58 | 93.59 | 93.70422 | 93.70042 |
59 | 93.47 | 93.58785 | 93.58933 |
60 | 93.38 | 93.48330 | 93.49280 |
61 | 93.30 | 93.36240 | 93.38630 |
62 | 93.47 | 93.48330 | 93.49280 |
Table 5 Measured values and neural network predicted values of the 58th ~ 62nd rounds of Radar B
弹序 | 实测值 | 神经网络预测值 | SVR预测值 |
---|---|---|---|
58 | 93.59 | 93.70422 | 93.70042 |
59 | 93.47 | 93.58785 | 93.58933 |
60 | 93.38 | 93.48330 | 93.49280 |
61 | 93.30 | 93.36240 | 93.38630 |
62 | 93.47 | 93.48330 | 93.49280 |
弹序 | 实测值 | 神经网络预测值 | SVR预测值 |
---|---|---|---|
66 | 92.90 | 92.87567 | 93.09812 |
67 | 92.87 | 92.86936 | 93.09310 |
68 | 92.87 | 92.86309 | 93.08815 |
69 | 92.82 | 92.82619 | 93.06020 |
70 | 92.97 | 92.92084 | 93.13554 |
Table 6 Measured values and neural network predicted values of the 66th~70th rounds of Radar B
弹序 | 实测值 | 神经网络预测值 | SVR预测值 |
---|---|---|---|
66 | 92.90 | 92.87567 | 93.09812 |
67 | 92.87 | 92.86936 | 93.09310 |
68 | 92.87 | 92.86309 | 93.08815 |
69 | 92.82 | 92.82619 | 93.06020 |
70 | 92.97 | 92.92084 | 93.13554 |
弹序 | 实测值 | 神经网络预测值 | SVR预测值 |
---|---|---|---|
104 | 92.53 | 92.59104 | 92.71547 |
105 | 92.78 | 92.84000 | 92.84771 |
106 | 92.95 | 93.03365 | 92.98245 |
107 | 92.59 | 92.69054 | 92.76176 |
108 | 92.82 | 92.89735 | 92.88517 |
Table 7 Measured values and neural network predicted values of the 104th~108th rounds of Radar B
弹序 | 实测值 | 神经网络预测值 | SVR预测值 |
---|---|---|---|
104 | 92.53 | 92.59104 | 92.71547 |
105 | 92.78 | 92.84000 | 92.84771 |
106 | 92.95 | 93.03365 | 92.98245 |
107 | 92.59 | 92.69054 | 92.76176 |
108 | 92.82 | 92.89735 | 92.88517 |
弹序 | 实测值 | 神经网络预测值 | SVR预测值 |
---|---|---|---|
1 | 85.30 | 85.65732 | 94.20604 |
2 | 85.20 | 85.66622 | 94.20604 |
3 | 85.39 | 85.65430 | 94.20604 |
4 | 85.38 | 85.66515 | 94.20604 |
5 | 85.41 | 85.65885 | 94.20604 |
Table 8 Measured values of v1 Radar B and predicted values of BP neural network
弹序 | 实测值 | 神经网络预测值 | SVR预测值 |
---|---|---|---|
1 | 85.30 | 85.65732 | 94.20604 |
2 | 85.20 | 85.66622 | 94.20604 |
3 | 85.39 | 85.65430 | 94.20604 |
4 | 85.38 | 85.66515 | 94.20604 |
5 | 85.41 | 85.65885 | 94.20604 |
弹序 | 实测值 | 神经网络预测值 | SVR预测值 |
---|---|---|---|
1 | 84.80 | 84.31650 | 94.20603 |
2 | 84.86 | 84.31782 | 94.20604 |
3 | 84.82 | 84.31676 | 94.20603 |
4 | 84.86 | 84.31808 | 94.20603 |
5 | 84.86 | 84.31782 | 94.20603 |
Table 9 Measured values of v2 Radar B and predicted values of BP neural network
弹序 | 实测值 | 神经网络预测值 | SVR预测值 |
---|---|---|---|
1 | 84.80 | 84.31650 | 94.20603 |
2 | 84.86 | 84.31782 | 94.20604 |
3 | 84.82 | 84.31676 | 94.20603 |
4 | 84.86 | 84.31808 | 94.20603 |
5 | 84.86 | 84.31782 | 94.20603 |
[1] |
GJB2973A—2008,火炮内弹道试验方法[S]. 北京: 中国人民解放军总装备部, 2008.
|
GJB2973A—2008. Test method for interior ballistics of artillery[S]. Beijing: General Armament Department of the Chinese people's Liberation Army, 2008. (in Chinese)
|
|
[2] |
梁承栋, 张贤椿, 王军. 炮口初速预测方法综述[J]. 兵工自动化, 2020, 39(8):10-15.
|
|
|
[3] |
田珂, 陈铎. 基于组合模型预测火炮初速的研究与应用[J]. 火炮发射与控制学报, 2021, 42(1):30-35.
|
|
|
[4] |
解维河, 孙卫国, 孙东彦. 舰炮首发弹丸初速预测新方法[J]. 兵器装备工程学报, 2019, 40(8):18-20.
|
|
|
[5] |
解维河, 孙卫国, 孙东彦. 弹丸初速预测误差分析及模型改进研究[J]. 指挥控制与仿真, 2019, 41(3):113-115.
doi: 10.3969/j.issn.1673-3819.2019.03.024 |
|
|
[6] |
张良均, 云伟标, 王路, 等. R语言数据分析与挖掘实战[M]. 北京: 机械工业出版社, 2018:318.
|
|
|
[7] |
艾云昊, 杨超宇, 李慧宗. 基于聚类的关联规则后处理算法研究[J]. 黑龙江工业学院学报, 2020, 20(9):126-131.
|
|
|
[8] |
赵露. 基于聚类分析的网络安全数据特征可视化融合研究[J]. 长春工程学院学报, 2020, 21(2):94-97.
|
|
|
[9] |
王青松, 姜富山, 李菲. 大数据环境下基于关联规则的多标签学习算法[J]. 计算机科学, 2020, 47(5):90-95.
doi: 10.11896/jsjkx.190300150 |
doi: 10.1063/1.31588 URL |
|
[10] |
田建勇, 石林江. 融合布尔矩阵和项目特性的关联规则挖掘算法[J]. 控制工程, 2020, 27(6):1004-1011.
|
|
|
[11] |
杨岚雁, 靳敏, 张迎春, 等. 一种基于关联规则的MLKNN多标签分类算法[J]. 计算机工程与科学, 2020, 42(7):1309-1317.
|
|
|
[12] |
doi: 10.1007/s10462-011-9208-z URL |
[13] |
doi: 10.3901/CJME.2009.01.036 URL |
[14] |
高玉波, 张伟, 李达诚, 等. 基于反向传播神经网络的陶瓷损伤参数反演分析[J]. 兵工学报, 2018, 39(1):146-152.
doi: 10.3969/j.issn.1000-1093.2018.01.016 |
|
|
[15] |
王国辉, 张宝栋, 李向荣. 基于遗传算法的BP神经网络火炮身管烧蚀磨损量预测[J]. 火炮发射与控制学报 2019, 40(4):6-10,15.
|
|
|
[16] |
齐浩淳, 黄大鹏, 魏久南, 等. 基于BP神经网络的高寒山地弹药消耗需求分析[J]. 兵器装备工程学报, 2016, 37(6):97-101.
|
|
|
[17] |
田珂. 基于组合模型高精度预测弹丸径向速度的方法[J]. 弹道学报, 2022, 34(3):49-57.
|
|
|
[18] |
刘畅, 肖斌, 蒋铁军, 等. 一种改进K均值的小样本聚类算法[J]. 兵器装备工程学报, 2021, 42(增刊1):266-270.
|
|
|
[19] |
薛震, 孙玉林. R语言统计分析与机器学习[M]. 北京: 中国水利水电出版社, 2020:196-362.
|
|
|
[20] |
廖孟柯, 樊冰, 李忠政, 等. 基于改进Apriori算法的配电网设备退役信息挖掘[J]. 科学技术与工程, 2021, 21(24):10381-10386.
|
|
|
[21] |
邱明月. 基于Apriori关联规则的草原火灾预警及对策研究[J]. 科技经济导报, 2019, 27(26):106-108.
|
|
|
[22] |
纪文璐, 王海龙, 苏贵斌, 等. 基于关联规则算法的推荐方法研究综述[J]. 计算机工程与应用, 2020, 56(22):33-41.
doi: 10.3778/j.issn.1002-8331.2006-0158 |
|
|
[23] |
于哲峰, 婿建宇, 罗跃, 等. 高超声速飞行器烧蚀后退量时序提取及基于神经网络的预测[J]. 兵工学报, 2021, 42(6):1230-1237.
doi: 10.3969/j.issn.1000-1093.2021.06.013 |
|
|
[24] |
高昂, 段渭军, 李立欣, 等. 基于神经网络的无人机云服务质量控制方法研究[J]. 兵工学报, 2018, 39(9):1762-1771.
doi: 10.3969/j.issn.1000-1093.2018.09.013 |
doi: 10.3969/j.issn.1000-1093.2018.09.013 |
|
[25] |
何耀民, 何华锋, 徐永壮, 等. 基于反向传播神经网络的海杂波参数估计[J]. 兵工学报, 2019, 40(12):2473-2481.
doi: 10.3969/j.issn.1000-1093.2019.12.011 |
|
|
[26] |
王成, 吴岩, 杨廷飞. 利用改进单分类支持向量机提升舰船尾流目标的检测准确率[J]. 兵工学报, 2020, 41(9):1887-1893.
doi: 10.3969/j.issn.1000-1093.2020.09.021 |
|
|
[27] |
孙丽娜, 王应海, 黄永红, 等. 基于贝叶斯推断LSSVM的枪管寿命建模与预测[J]. 火炮发射与控制学报, 2018, 39(4):91-95.
|
|
[1] | LIU Mengzhen, HUANG Guangyan, ZHANG Hong, ZHOU Hongyuan, LIU Siyu. Protective Material Crease Detection with Small Sample-driven Feature Segmented Neural Network [J]. Acta Armamentarii, 2024, 45(3): 963-974. |
[2] | QIN Guohua, LOU Weida, LIN Feng, XU Yong. A Novel Method of Stability Judgment and Milling Parameter Optimization Based on Cotes Integration Method and Neural Network [J]. Acta Armamentarii, 2024, 45(2): 516-526. |
[3] | LIU Chang, LEI Hongbo, LIN Shiyao, FAN Shipeng, WANG Jiang. Firing Data Calculation Method for Laser Terminal Guidance Projectile Based on Multi-model Network [J]. Acta Armamentarii, 2023, 44(9): 2745-2755. |
[4] | ZHANG Kaige, LU Zhigang, NIE Tianchang, LI Zhiwei, GUO Yuqiang. Analysis of Soft Intelligent Edge Computing Technologies for Unmanned Systems [J]. Acta Armamentarii, 2023, 44(9): 2611-2621. |
[5] | ZHOU Yu, CAO Ronggang, LI Ping, MA Xiao. A Fuze Burst Point Detection Method for Outfield Test Images [J]. Acta Armamentarii, 2023, 44(8): 2453-2464. |
[6] | WU Liyang, GUO Pengcheng, LIU Chao, LI Wenqiang. Radar Signal Modulation Type Recognition Based on Attention Mechanism Enhanced Residual Networks [J]. Acta Armamentarii, 2023, 44(8): 2310-2318. |
[7] | XIE Baoqi, LI Yingshun, WANG Debiao, SUI Huanhuan. Method for Evaluating Tank Gunner’s Sight System [J]. Acta Armamentarii, 2023, 44(8): 2414-2423. |
[8] | LIU Yi, REN Jihuan, WU Xiang, BO Yuming. Newly Equipped Armored Vehicle Classification Based on Integrated Transfer Learning [J]. Acta Armamentarii, 2023, 44(8): 2319-2328. |
[9] | SONG Qiuyu, HU Jian, YAO Jianyong, BAI Yanchun, YANG Zhengyin. Output Feedback Control for Launch Platform Using Neural Network Observer and Output Constraint [J]. Acta Armamentarii, 2023, 44(7): 2184-2196. |
[10] | HUA Yingjie, LIU Jing, SHAO Yubin, DUO Lin. Language Identification in Battlefield Environments [J]. Acta Armamentarii, 2023, 44(7): 2197-2206. |
[11] | HE Jincheng, HAN Yongcheng, ZHANG Wenwen, HE Weiji, CHEN Qian. True Color Low-Light Image Enhancement Based on Channel-Calibrated Convolution [J]. Acta Armamentarii, 2023, 44(6): 1643-1654. |
[12] | LIU Jia, LIU Hai’ou, CHEN Huiyan, MAO Feihong. Road Types Identification Method of Unmanned Tracked Vehicles Based on Fusion Features [J]. Acta Armamentarii, 2023, 44(5): 1267-1276. |
[13] | TAO Lei, LIU Jianhua, XIA Huanxiong, AO Xiaohui, GAO Feng. Temperature Field Prediction of Melt-cast Explosives Based on a B-spline Neural Network [J]. Acta Armamentarii, 2023, 44(5): 1339-1349. |
[14] | WANG Jian, ZHANG Bangning, ZHANG Jie, WEI Guofeng, GUO Daoxing. A Method for Specific Communication Emitter Identification Based on Multi-Domain Feature Fusion [J]. Acta Armamentarii, 2023, 44(4): 949-959. |
[15] | ZHANG Liang'an, CHEN Yang, XIE Shenglong, LIU Tongxin. Crack Detection System for Aircraft Protective Grill based on Machine Vision and Deep Learning [J]. Acta Armamentarii, 2023, 44(2): 507-516. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||