
Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (9): 240447-.doi: 10.12382/bgxb.2024.0447
Previous Articles Next Articles
LIAO Renlong1, LUO Zhongtao1,*(
), YIN Shuijun2, ZHANG Wei3
Received:2024-06-06
Online:2025-09-24
Contact:
LUO Zhongtao
CLC Number:
LIAO Renlong, LUO Zhongtao, YIN Shuijun, ZHANG Wei. A Radar Signal Modulation Recognition Method Based on Multi-scale Dual Attention Network[J]. Acta Armamentarii, 2025, 46(9): 240447-.
Add to citation manager EndNote|Ris|BibTeX
| 网络层 | 神经元数量 | 卷积核参数 | 输出大小 |
|---|---|---|---|
| 输入 | N/A | N/A | 256×256×3 |
| Conv | 32 | 3×3,1,1 | 256×256×32 |
| ReLU | N/A | N/A | 256×256×32 |
| MP | N/A | 2×2,2,0 | 128×128×32 |
| MSDA | N/A | N/A | 128×128×32 |
| Conv | 64 | 3×3,2,1 | 64×64×64 |
| MSDA | N/A | N/A | 64×64×64 |
| Conv | 64 | 3×3,2,1 | 32×32×64 |
| MSDA | N/A | N/A | 32×32×64 |
| Conv | 64 | 3×3,2,1 | 16×16×64 |
| ReLU | N/A | N/A | 16×16×64 |
| MP | N/A | 2×2,2,0 | 8×8×64 |
| Flatten | 4096 | N/A | 1×4096 |
| Linear | 12 | N/A | 1×12 |
Table 1 MSDANet parameters
| 网络层 | 神经元数量 | 卷积核参数 | 输出大小 |
|---|---|---|---|
| 输入 | N/A | N/A | 256×256×3 |
| Conv | 32 | 3×3,1,1 | 256×256×32 |
| ReLU | N/A | N/A | 256×256×32 |
| MP | N/A | 2×2,2,0 | 128×128×32 |
| MSDA | N/A | N/A | 128×128×32 |
| Conv | 64 | 3×3,2,1 | 64×64×64 |
| MSDA | N/A | N/A | 64×64×64 |
| Conv | 64 | 3×3,2,1 | 32×32×64 |
| MSDA | N/A | N/A | 32×32×64 |
| Conv | 64 | 3×3,2,1 | 16×16×64 |
| ReLU | N/A | N/A | 16×16×64 |
| MP | N/A | 2×2,2,0 | 8×8×64 |
| Flatten | 4096 | N/A | 1×4096 |
| Linear | 12 | N/A | 1×12 |
| 调制方式 | 参数 | 变化范围/MHz |
|---|---|---|
| CW | fc | 45~55 |
| LFM | fc Bs | 45~55 15~20 |
| NLFM | fc Bs | 45~55 15~20 |
| BPSK | fc 13RandCode | 45~55 (0,1) |
| QPSK | fc 21RandCode | 45~55 (0,1/2,1,3/2) |
| FSK | fc Δf 13RandCode | 45~55 10~20 (0,1) |
| 4FSK | fc Δf 16RandCode | 45~55 5~15 (0,1,2,3) |
| Frank | fc | 45~55 |
| P1 | fc | 45~55 |
| P2 | fc | 45~55 |
| P3 | fc | 45~55 |
| P4 | fc | 45~55 |
Table 2 Radar signal parameter configuration information
| 调制方式 | 参数 | 变化范围/MHz |
|---|---|---|
| CW | fc | 45~55 |
| LFM | fc Bs | 45~55 15~20 |
| NLFM | fc Bs | 45~55 15~20 |
| BPSK | fc 13RandCode | 45~55 (0,1) |
| QPSK | fc 21RandCode | 45~55 (0,1/2,1,3/2) |
| FSK | fc Δf 13RandCode | 45~55 10~20 (0,1) |
| 4FSK | fc Δf 16RandCode | 45~55 5~15 (0,1,2,3) |
| Frank | fc | 45~55 |
| P1 | fc | 45~55 |
| P2 | fc | 45~55 |
| P3 | fc | 45~55 |
| P4 | fc | 45~55 |
| 网络模型 | 识别率/% | 参数量/106 | 浮点运算量/109 | |||
|---|---|---|---|---|---|---|
| SNR=-14dB | SNR=-12dB | SNR=-10dB | SNR=-8dB | |||
| MSDANet | 85.12 | 96.22 | 98.99 | 99.99 | 0.5412 | 1.6668 |
| CNN[ | 34.56 | 41.12 | 54.87 | 60.11 | 0.0007 | 0.0035 |
| CNN[ | 55.23 | 68.20 | 75.17 | 80.53 | 2.5539 | 0.0334 |
| CNN[ | 72.11 | 87.26 | 94.76 | 98.98 | 0.2373 | 0.0707 |
| CNN[ | 52.33 | 73.83 | 86.21 | 95.55 | 12.3113 | 0.1509 |
| CNN[ | 32.71 | 50.42 | 74.78 | 90.45 | 21.0068 | 0.0371 |
| LeNet[ | 51.88 | 64.63 | 71.86 | 79.23 | 0.0622 | 0.0007 |
| AlexNet[ | 72.73 | 85.37 | 92.38 | 96.54 | 14.6060 | 0.3092 |
| ResNet50[ | 74.57 | 90.17 | 97.36 | 99.56 | 23.5326 | 4.1317 |
Table 3 The overall recognition rate and parameter comparison of different network models
| 网络模型 | 识别率/% | 参数量/106 | 浮点运算量/109 | |||
|---|---|---|---|---|---|---|
| SNR=-14dB | SNR=-12dB | SNR=-10dB | SNR=-8dB | |||
| MSDANet | 85.12 | 96.22 | 98.99 | 99.99 | 0.5412 | 1.6668 |
| CNN[ | 34.56 | 41.12 | 54.87 | 60.11 | 0.0007 | 0.0035 |
| CNN[ | 55.23 | 68.20 | 75.17 | 80.53 | 2.5539 | 0.0334 |
| CNN[ | 72.11 | 87.26 | 94.76 | 98.98 | 0.2373 | 0.0707 |
| CNN[ | 52.33 | 73.83 | 86.21 | 95.55 | 12.3113 | 0.1509 |
| CNN[ | 32.71 | 50.42 | 74.78 | 90.45 | 21.0068 | 0.0371 |
| LeNet[ | 51.88 | 64.63 | 71.86 | 79.23 | 0.0622 | 0.0007 |
| AlexNet[ | 72.73 | 85.37 | 92.38 | 96.54 | 14.6060 | 0.3092 |
| ResNet50[ | 74.57 | 90.17 | 97.36 | 99.56 | 23.5326 | 4.1317 |
| 网络模型 | 识别率/% | 参数量/106 | 浮点运算量/109 | |||
|---|---|---|---|---|---|---|
| SNR=-14dB/% | SNR=-12dB/% | SNR=-10dB/% | SNR=-8dB/% | |||
| LeNet | 51.88 | 64.63 | 71.86 | 79.23 | 0.0622 | 0.0007 |
| LeNet+MSDA | 61.29 | 76.45 | 84.62 | 90.24 | 0.0737 | 0.0009 |
| AlexNet | 72.73 | 85.37 | 92.38 | 96.54 | 14.6060 | 0.3092 |
| AlexNet+MSDA | 79.62 | 91.45 | 97.88 | 99.22 | 14.6093 | 0.4597 |
| ResNet50 | 74.57 | 90.17 | 97.36 | 99.56 | 23.5326 | 4.1317 |
| ResNet50+MSDA | 77.68 | 91.72 | 97.71 | 99.11 | 8.8648 | 3.8811 |
Table 4 Performance comparison of MSDA module after adding classic CNN
| 网络模型 | 识别率/% | 参数量/106 | 浮点运算量/109 | |||
|---|---|---|---|---|---|---|
| SNR=-14dB/% | SNR=-12dB/% | SNR=-10dB/% | SNR=-8dB/% | |||
| LeNet | 51.88 | 64.63 | 71.86 | 79.23 | 0.0622 | 0.0007 |
| LeNet+MSDA | 61.29 | 76.45 | 84.62 | 90.24 | 0.0737 | 0.0009 |
| AlexNet | 72.73 | 85.37 | 92.38 | 96.54 | 14.6060 | 0.3092 |
| AlexNet+MSDA | 79.62 | 91.45 | 97.88 | 99.22 | 14.6093 | 0.4597 |
| ResNet50 | 74.57 | 90.17 | 97.36 | 99.56 | 23.5326 | 4.1317 |
| ResNet50+MSDA | 77.68 | 91.72 | 97.71 | 99.11 | 8.8648 | 3.8811 |
| [1] |
|
| [2] |
doi: 10.21629/JSEE.2018.01.05 |
| [3] |
|
| [4] |
|
| [5] |
吴礼洋, 呙鹏程, 刘超, 等. 基于注意力机制增强残差网络的雷达信号调制类型识别[J]. 兵工学报, 2023, 44(8):2310-2318.
doi: 10.12382/bgxb.2022.0302 |
|
doi: 10.12382/bgxb.2022.0302 |
|
| [6] |
赵凤, 耿苗苗, 刘汉强, 等. 卷积神经网络与视觉 Transformer 联合驱动的跨层多尺度融合网络高光谱图像分类方法[J]. 电子与信息学报, 2024, 46(5):2237-2248.
|
|
|
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
陈乾, 洪征, 司健鹏. 融合SENet和Transformer的应用层协议识别方法[J]. 计算机科学与探索, 2024, 18(3):805-817.
doi: 10.3778/j.issn.1673-9418.2304045 |
|
|
|
| [15] |
黄鑫, 屈文忠, 肖黎. 基于卷积注意力机制的阀门内漏声发射识别方法[J]. 振动与冲击, 2024, 43(9):105-114.
|
|
|
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
呙鹏程, 吴礼洋. 融合卷积特征与判别字典学习的低截获概率雷达信号识别[J]. 兵工学报, 2019, 40(9):1881-1889.
doi: 10.3969/j.issn.1000-1093.2019.09.013 |
|
doi: 10.3969/j.issn.1000-1093.2019.09.013 |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
徐卓君, 杨雯婷, 杨承志, 等. 雷达脉内调制识别的改进残差神经网络算法[J]. 吉林大学学报(工学版), 2021, 51(4):1454-1460.
|
|
|
|
| [26] |
徐桂光, 王旭东, 汪飞, 等. 基于 SE-ResNeXt 网络的低信噪比 LPI 雷达辐射源信号识别[J]. 系统工程与电子技术, 2022, 44(12):3676-3684.
doi: 10.12305/j.issn.1001-506X.2022.12.11 |
|
doi: 10.12305/j.issn.1001-506X.2022.12.11 |
|
| [27] |
|
| [28] |
|
| [1] | GAO Zhenhua, QIN Fenqi, WANG Linlin, YU Cungui. An Improved CNN-LSTM-based Fault Diagnosis Method for Breechblock Opening-closing Mechanism [J]. Acta Armamentarii, 2025, 46(9): 240818-. |
| [2] | LIU Hui, LI Mingyi, HAN Lijin, LIU Baoshuai. Research on Infrared Target Detection and Tracking in Dark Environments [J]. Acta Armamentarii, 2025, 46(8): 240081-. |
| [3] | TAO Weihao, LUO Yasong, LIN Fajun, QU Jianjing, LIU Yiping. Marine Ship Target Segmentation Method Based on Improved DeepLabV3+ [J]. Acta Armamentarii, 2025, 46(8): 240912-. |
| [4] | SHEN Ying, ZHANG Shuo, WANG Shu, SU Yun, XUE Fang, HUANG Feng. A Method for Detecting the Camouflaged Small Target in Complex Scene Using Airborne Polarization Remote Sensing [J]. Acta Armamentarii, 2025, 46(7): 240797-. |
| [5] | DONG Yi, KONG Xiaofang, LUO Hong’e, WAN Gang, XIA Yan, WAN Minjie. Lightweight Transmedia High-speed Small Target Detection Method Based on Coordinate Attention Mechanism [J]. Acta Armamentarii, 2025, 46(6): 240380-. |
| [6] | QIN Yuemei, CHEN Zhong, YANG Yanbo, LI Shuying. Joint State Equality Constraint Identification and Recursive Filtering Based on Deep Learning [J]. Acta Armamentarii, 2025, 46(6): 240578-. |
| [7] | SUN Shiyan, LI Lin, ZHU Huimin, SHI Zhangsong, LIANG Weige. Intelligent Recognition of Flight Pattern Based on IFPRM-SBLFS Deep Learning [J]. Acta Armamentarii, 2025, 46(5): 240893-. |
| [8] | LI Yangjun, HUANG Qilong, YANG Li, CHEN Xu. Combat Intention Recognition of Air Cluster Targets Driven by Data and Knowledge [J]. Acta Armamentarii, 2025, 46(2): 240113-. |
| [9] | CUI Suxiao, WU Zhe, CUI Yanping, ZHANG Qiang, ZHAO Yuejing. Fault Diagnosis of Planetary Gearbox Based on Frequency Slice Wavelet Transform and Attention-enhanced ConvNeXt Model [J]. Acta Armamentarii, 2025, 46(2): 240329-. |
| [10] | FENG Yingbin, GUO Xiaozun, YAN Jiahua. Small UVA Target Detection Algorithm Based on Multi-scale Attention Mechanism [J]. Acta Armamentarii, 2025, 46(1): 231124-. |
| [11] | SUN Xichen, LI Weibing, HUANG Changwei, FU Jiawei, FENG Jun. Multi-step-ahead Prediction of Grenade Trajectory Based on CNN-LSTM Enhanced by Deep Learning and Self-attention Mechanism [J]. Acta Armamentarii, 2024, 45(S1): 51-59. |
| [12] | ZHAO Zhixin, CAO Yulong, CHEN Yuanshuai, ZHOU Huilin, WANG Yuhao. A Time-invariant Sparse Model and a Deep Unrolling Network for Target Detection of Passive Radar [J]. Acta Armamentarii, 2024, 45(8): 2806-2816. |
| [13] | YANG Huanyu, WANG Jun, WU Xiang, BO Yuming, MA Lifeng, LU Jinlei. A Method for Military Aircraft Recognition Using a Coordinate Attention-based Deep Learning Network [J]. Acta Armamentarii, 2024, 45(7): 2128-2143. |
| [14] | LIU Peng, XIONG Zeyu, JING Wenbo, FENG Xuan, ZHANG Junhao, LIU Tongbo, WU Xueni, XIA Xuan, WAN Linlin, ZHAO Haili. Degrad Target Detection Algorithm [J]. Acta Armamentarii, 2024, 45(6): 2065-2075. |
| [15] | LUO Haowen, HE Shaoming, KANG Youwei. A Multitask Guidance Algorithm Based on Transfer Learning [J]. Acta Armamentarii, 2024, 45(6): 1787-1798. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||