
Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (9): 240792-.doi: 10.12382/bgxb.2024.0792
Previous Articles Next Articles
GU Hongcan1, WANG Jiabei1, WANG Peng1,*(
), ZHU Miao2, YAO Gaofei1, HUANG Junbin1, LÜ Jiaqing3
Received:2024-09-04
Online:2025-09-24
Contact:
WANG Peng
CLC Number:
GU Hongcan, WANG Jiabei, WANG Peng, ZHU Miao, YAO Gaofei, HUANG Junbin, LÜ Jiaqing. Directivity Analysis and Test of a Distributed WRFBG Hydrophone Linear Array[J]. Acta Armamentarii, 2025, 46(9): 240792-.
Add to citation manager EndNote|Ris|BibTeX
| γ | 方位误差/(°) | γ | 方位误差/(°) |
|---|---|---|---|
| 100 | 0.08 | 1600 | 0.90 |
| 200 | 0.10 | 3200 | 1.80 |
| 400 | 0.20 | 6400 | 3.60 |
| 800 | 0.40 | 12800 | 7.10 |
Table 1 The correspondence between γ and azimuth error in the direction of arrival of wave at 45°
| γ | 方位误差/(°) | γ | 方位误差/(°) |
|---|---|---|---|
| 100 | 0.08 | 1600 | 0.90 |
| 200 | 0.10 | 3200 | 1.80 |
| 400 | 0.20 | 6400 | 3.60 |
| 800 | 0.40 | 12800 | 7.10 |
| 入射方向/(°) | 类别 | 频率/kHz | ||||||
|---|---|---|---|---|---|---|---|---|
| 2.500 | 3.125 | 4.000 | 5.000 | 6.300 | 8.000 | 10.000 | ||
| 40 | 测试宽度 | 60.0 | 55.0 | 34.0 | 25.0 | 22.0 | 16.0 | 15.0 |
| 理论计算宽度 | 55.5 | 46.7 | 31.6 | 23.3 | 20.1 | 14.9 | 11.9 | |
| 差值 | 4.5 | 8.3 | 2.4 | 1.7 | 1.9 | 1.1 | 3.1 | |
| 55 | 测试宽度 | 37.0 | 33.0 | 26.0 | 18.0 | 15.0 | 12.0 | 10.0 |
| 理论计算宽度 | 40.8 | 32.5 | 24.5 | 17.8 | 14.9 | 11.7 | 9.3 | |
| 差值 | -3.8 | 0.5 | 1.5 | 0.2 | 0.1 | 0.3 | 0.7 | |
| 75 | 测试宽度 | 26.0 | 24.0 | 20.0 | 16.0 | 13.0 | 11.0 | 9.0 |
| 理论计算宽度 | 31.8 | 25.4 | 19.7 | 15.8 | 12.4 | 9.9 | 7.9 | |
| 差值 | -5.8 | -1.4 | 0.3 | 0.2 | 0.6 | 1.1 | 1.1 | |
| 90 | 测试宽度 | 30.0 | 24.0 | 18.0 | 15.0 | 12.0 | 10.0 | 8.0 |
| 理论计算宽度 | 30.6 | 24.4 | 19.0 | 15.2 | 12.0 | 9.4 | 7.6 | |
| 差值 | -0.6 | -0.4 | -1.0 | -0.2 | 0 | 0.6 | 0.4 | |
| 100 | 测试宽度 | 30.0 | 24.0 | 18.0 | 15.0 | 12.0 | 10.0 | 8.0 |
| 理论计算宽度 | 30.6 | 24.4 | 19.0 | 15.2 | 12.0 | 9.4 | 7.6 | |
| 差值 | -0.6 | -0.4 | -1.0 | -0.2 | 0 | 0.6 | 0.4 | |
| 115 | 测试宽度 | 31.0 | 25.0 | 20.0 | 16.0 | 13.0 | 10.0 | 80. |
| 理论计算宽度 | 33.9 | 26.9 | 20.9 | 16.5 | 12.9 | 10.2 | 8.2 | |
| 差值 | -2.9 | -1.9 | -0.9 | -0.5 | 0.1 | -0.2 | -0.2 | |
| 135 | 测试宽度 | 50.0 | 33.0 | 28.0 | 23.0 | 20.0 | 15.0 | 21.0 |
| 理论计算宽度 | 46.3 | 36.0 | 26.8 | 22.3 | 17.6 | 13.7 | 11.0 | |
| 差值 | 3.7 | -3.0 | 1.2 | 0.7 | 2.4 | 1.3 | 10.0 | |
| 145 | 测试宽度 | 56.0 | 47.0 | 32.0 | 28.0 | 24.0 | 18.0 | 23.0 |
| 理论计算宽度 | 56.2 | 53.9 | 38.8 | 29.7 | 23.4 | 17.1 | 13.8 | |
| 差值 | -0.2 | -6.9 | -6.8 | -1.7 | 0.6 | 0.9 | 9.2 | |
Table 2 Beam widths of sound waves in different incident directions at different frequencies (°)
| 入射方向/(°) | 类别 | 频率/kHz | ||||||
|---|---|---|---|---|---|---|---|---|
| 2.500 | 3.125 | 4.000 | 5.000 | 6.300 | 8.000 | 10.000 | ||
| 40 | 测试宽度 | 60.0 | 55.0 | 34.0 | 25.0 | 22.0 | 16.0 | 15.0 |
| 理论计算宽度 | 55.5 | 46.7 | 31.6 | 23.3 | 20.1 | 14.9 | 11.9 | |
| 差值 | 4.5 | 8.3 | 2.4 | 1.7 | 1.9 | 1.1 | 3.1 | |
| 55 | 测试宽度 | 37.0 | 33.0 | 26.0 | 18.0 | 15.0 | 12.0 | 10.0 |
| 理论计算宽度 | 40.8 | 32.5 | 24.5 | 17.8 | 14.9 | 11.7 | 9.3 | |
| 差值 | -3.8 | 0.5 | 1.5 | 0.2 | 0.1 | 0.3 | 0.7 | |
| 75 | 测试宽度 | 26.0 | 24.0 | 20.0 | 16.0 | 13.0 | 11.0 | 9.0 |
| 理论计算宽度 | 31.8 | 25.4 | 19.7 | 15.8 | 12.4 | 9.9 | 7.9 | |
| 差值 | -5.8 | -1.4 | 0.3 | 0.2 | 0.6 | 1.1 | 1.1 | |
| 90 | 测试宽度 | 30.0 | 24.0 | 18.0 | 15.0 | 12.0 | 10.0 | 8.0 |
| 理论计算宽度 | 30.6 | 24.4 | 19.0 | 15.2 | 12.0 | 9.4 | 7.6 | |
| 差值 | -0.6 | -0.4 | -1.0 | -0.2 | 0 | 0.6 | 0.4 | |
| 100 | 测试宽度 | 30.0 | 24.0 | 18.0 | 15.0 | 12.0 | 10.0 | 8.0 |
| 理论计算宽度 | 30.6 | 24.4 | 19.0 | 15.2 | 12.0 | 9.4 | 7.6 | |
| 差值 | -0.6 | -0.4 | -1.0 | -0.2 | 0 | 0.6 | 0.4 | |
| 115 | 测试宽度 | 31.0 | 25.0 | 20.0 | 16.0 | 13.0 | 10.0 | 80. |
| 理论计算宽度 | 33.9 | 26.9 | 20.9 | 16.5 | 12.9 | 10.2 | 8.2 | |
| 差值 | -2.9 | -1.9 | -0.9 | -0.5 | 0.1 | -0.2 | -0.2 | |
| 135 | 测试宽度 | 50.0 | 33.0 | 28.0 | 23.0 | 20.0 | 15.0 | 21.0 |
| 理论计算宽度 | 46.3 | 36.0 | 26.8 | 22.3 | 17.6 | 13.7 | 11.0 | |
| 差值 | 3.7 | -3.0 | 1.2 | 0.7 | 2.4 | 1.3 | 10.0 | |
| 145 | 测试宽度 | 56.0 | 47.0 | 32.0 | 28.0 | 24.0 | 18.0 | 23.0 |
| 理论计算宽度 | 56.2 | 53.9 | 38.8 | 29.7 | 23.4 | 17.1 | 13.8 | |
| 差值 | -0.2 | -6.9 | -6.8 | -1.7 | 0.6 | 0.9 | 9.2 | |
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
庞彦东. 基于拉丝塔光栅阵列的超细线光纤水听器关键技术研究[D]. 武汉: 武汉理工大学, 2020.
|
|
|
|
| [8] |
王宇琦, 潘震, 戢雅典. 基于拉丝塔光纤光栅的准分布式温盐传感器[J]. 光子学报, 2023, 52(4):41-51.
|
|
|
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
林慧祖. 基于匹配干涉的光纤光栅水听器阵列关键技术研究[D]. 长沙: 国防科学技术大学, 2013.
|
|
|
|
| [13] |
王文鼎. 基于匹配干涉的光纤光栅水听器细线阵成阵关键技术研究[D]. 长沙: 国防科技大学, 2019.
|
|
|
|
| [14] |
郭振, 高侃, 杨辉, 等. 外径20mm的光纤光栅干涉型拖曳水听器阵列[J]. 光学学报, 2019, 39(11):1106003.
|
|
|
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
doi: 10.1364/OE.23.029038 pmid: 26561173 |
| [19] |
丁朋, 黄俊斌, 姚高飞, 等. 二次涂覆增敏型弱反射光纤布拉格光栅水听器[J]. 中国激光, 2021, 48(9):0906003.
|
| [1] |
|
| [2] |
|
| [19] |
|
| [20] |
丁朋, 黄俊斌, 庞彦东, 等. 弱反射光纤光栅水听器拖曳线列阵[J]. 光子学报, 2021, 50(7):0706004.
|
|
|
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
邱立忠. 光纤水听器基元特性及PGC检测方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2011.
|
|
|
|
| [27] |
李启虎. 数字式声纳设计原理[M]. 合肥: 安徽教育出版社, 2002:184-185.
|
|
|
| [1] | ZHAI Chun-ping, ZHANG Ming-wei, ZHANG Yu, LIU Yu-dong. Research on Precise Localization for Non-cooperative Shallow Water Sound Source [J]. Acta Armamentarii, 2012, 33(4): 465-470. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||