Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (7): 240611-.doi: 10.12382/bgxb.2024.0611
Previous Articles Next Articles
HU Mulin1, WUYi1,2,*(), WANG Xingyuan1, GUO Songlin1, YU Junyi1
Received:
2024-07-22
Online:
2025-08-12
Contact:
WUYi
CLC Number:
HU Mulin, WUYi, WANG Xingyuan, GUO Songlin, YU Junyi. Numerical Simulation of the Dynamic Mixing Process of HTPB/Al/AP/RDX Solid Propellant[J]. Acta Armamentarii, 2025, 46(7): 240611-.
Add to citation manager EndNote|Ris|BibTeX
组别 | Al粉/% | AP/% | RDX/% | HTPB/% | 固含量 /% |
---|---|---|---|---|---|
a | 0 | 0 | 0 | 100 | 0 |
b | 18 | 7 | 0 | 75 | 25 |
c | 18 | 42 | 0 | 40 | 60 |
d | 18 | 46 | 31 | 5 | 95 |
Table 1 Composition and content of rheological experimental propellant slurry
组别 | Al粉/% | AP/% | RDX/% | HTPB/% | 固含量 /% |
---|---|---|---|---|---|
a | 0 | 0 | 0 | 100 | 0 |
b | 18 | 7 | 0 | 75 | 25 |
c | 18 | 42 | 0 | 40 | 60 |
d | 18 | 46 | 31 | 5 | 95 |
序号 | 入口数 | 粉末加注 速度mm/s | 工序 |
---|---|---|---|
1 | 15 | 12.5 | 加注+混合46.8s |
2 | 15 | 15 | 加注+混合39s |
3 | 15 | 17.5 | 加注+混合33.43s |
4 | 15 | 20 | 加注+混合29.25s |
5 | 7 | 32.5 | 加注+混合39s |
6 | 15 | 15 | 加注+混合Al粉7.45s |
混合直至均匀 | |||
加注+混合AP 24.89s | |||
混合直至均匀 | |||
加注+混合RDX 6.66s | |||
混合直至均匀 |
Table 2 Working condition settings
序号 | 入口数 | 粉末加注 速度mm/s | 工序 |
---|---|---|---|
1 | 15 | 12.5 | 加注+混合46.8s |
2 | 15 | 15 | 加注+混合39s |
3 | 15 | 17.5 | 加注+混合33.43s |
4 | 15 | 20 | 加注+混合29.25s |
5 | 7 | 32.5 | 加注+混合39s |
6 | 15 | 15 | 加注+混合Al粉7.45s |
混合直至均匀 | |||
加注+混合AP 24.89s | |||
混合直至均匀 | |||
加注+混合RDX 6.66s | |||
混合直至均匀 |
组成 | 黏合剂 (液相) | AL颗粒相 (d=10μm) | AP颗粒相 (d=100μm) | RDX颗粒相 (d=100μm) |
---|---|---|---|---|
含量% | 24 | 18 | 46 | 12 |
Table 3 Composition and content of solid propellant slurry
组成 | 黏合剂 (液相) | AL颗粒相 (d=10μm) | AP颗粒相 (d=100μm) | RDX颗粒相 (d=100μm) |
---|---|---|---|---|
含量% | 24 | 18 | 46 | 12 |
组别 | 网格数 | 远心桨扭矩/(N·m) | 偏差/% |
---|---|---|---|
网格1 | 2×105 | 0.000295 | -8.3 |
网格2 | 3×105 | 0.000321 | -0.3 |
网格3 | 4×105 | 0.000324 | 0.6 |
网格4 | 7×105 | 0.000322 | 0 |
Table 4 Time averaged values of centrifugal propeller torque with different grid numbers
组别 | 网格数 | 远心桨扭矩/(N·m) | 偏差/% |
---|---|---|---|
网格1 | 2×105 | 0.000295 | -8.3 |
网格2 | 3×105 | 0.000321 | -0.3 |
网格3 | 4×105 | 0.000324 | 0.6 |
网格4 | 7×105 | 0.000322 | 0 |
Fig.11 Distribution of pressure and particle concentration in the mixing pot at 20s at different injection speeds:in the mixing pot,at the cross section with a height of 20mm
曲线编号 | 扭矩平均值/(N·m) | 与曲线I相比增幅/% |
---|---|---|
I | 0.033299 | |
II | 0.091416 | 174.5 |
III | 0.175965 | 428.4 |
IV V VI | 0.506172 0.489363 0.639475 | 1420.1 1369.6 1820.4 |
Table 5 I-VI curve average value of centrifugal propeller torque
曲线编号 | 扭矩平均值/(N·m) | 与曲线I相比增幅/% |
---|---|---|
I | 0.033299 | |
II | 0.091416 | 174.5 |
III | 0.175965 | 428.4 |
IV V VI | 0.506172 0.489363 0.639475 | 1420.1 1369.6 1820.4 |
[1] |
李莹新, 莫纪安, 王秀云, 等. 固体火箭发动机壳体复合材料研究进展[J]. 航天制造技术, 2020(4):65-69.
|
|
|
[2] |
|
[3] |
时茗扬, 李春娜, 刘洋, 等. 不确定性下的固体火箭发动机性能精确代理建模方法[J]. 推进技术, 2025, 46(1):32-41.
|
|
|
[4] |
朱艳明, 吕端, 胡润芝, 等. 固体推进剂连续混合工艺参数控制与工程优化[J]. 固体火箭技术, 2020, 43(6):776-781.
|
|
|
[5] |
|
[6] |
武宇恒, 蔚红建, 付小龙. 固体推进剂的流变性能及工艺仿真研究进展[J]. 火工品, 2024 (2):58-64.
|
|
|
[7] |
|
[8] |
|
[9] |
|
[10] |
关英波. 立式捏合机搅拌桨叶的力学数值分析[D]. 武汉: 华中科技大学, 2007.
|
|
|
[11] |
景玲. 立式捏合机搅拌桨叶应力与温度数值分析研究[D]. 西安: 西安工业大学, 2013.
|
|
|
[12] |
徐江华. 立式捏合机搅拌桨叶的转矩数值分析[D]. 武汉: 华中科技大学, 2012.
|
|
|
[13] |
|
[14] |
|
[15] |
易朋兴, 胡友民, 崔峰, 等. 立式捏合机捏合间隙影响CFD分析[J]. 化工学报, 2007, 58(10):2680-2684.
|
|
|
[16] |
吴玉金, 野延年. 混合生产中固体推进剂的安全问题[J]. 固体火箭技术, 1998 (4):53-55.
|
|
|
[17] |
李胜婷, 庞维强, 南风强, 等. 不同因素对固体推进剂流变性能影响研究进展[J]. 火炸药学报, 2024, 47(2):114-130.
|
|
|
[18] |
李胜婷, 庞维强, 南风强, 等. 复合固体推进剂药浆浇铸工艺仿真及优化[J]. 火炸药学报, 2024, 47(10):937-944.
|
|
|
[19] |
朱宏春, 王吉强, 苗建波. NEPE推进剂药浆固化初期特殊流变性能研究[J]. 推进技术, 2013, 34(10):1420-1425.
|
|
|
[20] |
杜幸, 刘晋湘, 陈江波, 等. 丁羟推进剂流变性研究[J/OL]. 火炸药学报, 2025[2025-07-10].https://doi.org/10.14077/j.issn.1007-7812.202303035.
|
|
|
[21] |
江晓瑞, 李卓, 鲁荣, 等. 丁羟推进剂药浆固化过程中触变性转变规律研究[J]. 推进技术, 2020, 41(5):1178-1184.
|
|
|
[22] |
潘新洲, 李尚文, 姜磊, 等. 少铝HTPE推进剂药浆流变特性研究[J]. 固体火箭技术, 2021, 44(5):656-661.
|
|
|
[23] |
江晓瑞, 李卓, 韩秀洁, 等. 固体推进剂药浆改进Herschel-Bukely模型及其在仿真分析中的应用[J]. 推进技术, 2019, 40(9):2137-2143.
|
|
|
[24] |
doi: 10.1021/acsomega.2c00532 pmid: 35647447 |
[25] |
梁建, 朱剑波, 段丽华, 等. 立式捏合机桨叶结构与桨叶变形量的CFD仿真[J]. 固体火箭技术, 2018, 41(6):745-749,753.
|
|
|
[26] |
杨明金. 立式捏合机混合釜内固体推进剂药浆混合的研究[D]. 武汉: 华中科技大学, 2008.
|
|
|
[27] |
洪寅, 刘看, 武毅, 等. 固体推进剂药浆立式混合过程SPH方法研究[J]. 含能材料, 2024, 32(11):1162-1173.
|
|
|
[28] |
王建, 刘皓, 赵亚风, 等. 复合固体推进剂双螺杆挤出成型过程DEM-CFD耦合仿真[J]. 含能材料, 2022, 30(2):138-145.
|
|
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
敖维坚, 张立新, 苏昌银, 等. 复合推进剂装药混合中的扭矩安全值[J]. 固体火箭技术, 2020, 43(1):53-58.
|
|
|
[34] |
张力恒, 苏昌银, 何煜, 等. 推进剂装药混合过程安全性研究[J]. 固体火箭技术, 2012, 35(4):508-512.
|
|
|
[35] |
|
[36] |
|
[37] |
|
[38] |
王正方, 翟瑞清. 立式捏合机搅拌桨的设计[J]. 固体火箭技术, 1993(1):65-69.
|
|
|
[39] |
|
[40] |
|
[1] | WANG Xin, WU Yanqing, YANG Kun, WU Yi, HOU Xiao. Experimental Study on the Deflagration Mechanism of High-energy Propellant Charge Subjected to Fragment Impact [J]. Acta Armamentarii, 2025, 46(3): 240293-. |
[2] | LI Yuxue, TIAN Xiaotao, MA Yifan, LIU Peijin, YAN Qilong. Thermal Interaction Mechanisms of Black Powders with Different Particle Sizes and Cellulose as Packing Material during Ignition [J]. Acta Armamentarii, 2024, 45(5): 1582-1592. |
[3] | XI Yunzhi, LI Junwei, CHEN Xueli, HAN Lei, WANG Ningfei. Experimental Method for Pressure-coupled Response of Solid Propellants Based on Rotary Valve [J]. Acta Armamentarii, 2021, 42(3): 511-520. |
[4] | HOU Yufei, XU Jinsheng, ZHOU Changsheng, CHEN Xiong, LI Hongwen. Comparation of Solid Propellant Micromodels with and without Damage at Initial Particle/matrix Interface [J]. Acta Armamentarii, 2020, 41(9): 1800-1808. |
[5] | ZHANG Zhengjin, GUO Xiaode, LIU Jie, LIANG Li, LI Kuankuan, CHANG Zhipeng, XIA Liang, TIAN Shubao, HUANG Dongyan, YANG Xueqin. Preparation of Ultrafine Lead Ferrocyanide/ammonium Perchlorate Composite Particles and Study of Their Thermal Decompositionand Anti-agglomeration Performance [J]. Acta Armamentarii, 2019, 40(11): 2220-2228. |
[6] | YE Zhen-wei, YU Yong-gang. Experimental Research and Numerical Simulation of Coupling Combustion of Pulsed Jet and AP/HTPB Propellant [J]. Acta Armamentarii, 2018, 39(8): 1507-1514. |
[7] | WANG Hong-li, XU Jin-sheng, LIU Zong-kui, TONG Xin, ZHOU Chang-sheng. Research on the Viscoelasticity-viscoplasticity-viscodamage Constitutive Model of Composite Modified Double Base Propellant [J]. Acta Armamentarii, 2018, 39(7): 1308-1315. |
[8] | ZHANG Huai-long, JIAN Xiao-xia, ZHOU Wei-liang, XIAO Le-qin. Research on Loading Method of Simulation Ignition Shock Testing for Solid Rocket Propellant at Low Temperature [J]. Acta Armamentarii, 2018, 39(4): 717-723. |
[9] | QI Xiao-fei, XIE Wu-xi, YAN Qi-long, LIU Qing, LIU Chun. Interfacial Interaction Between NPBA and HMX [J]. Acta Armamentarii, 2017, 38(10): 1942-1949. |
[10] | LI Wen-feng, YU Yong-gang, YE Rui. Effect of Charge Size on Cook-off Characteristics of AP/HTPB Base Bleed Propellant [J]. Acta Armamentarii, 2017, 38(8): 1532-1540. |
[11] | XU Yi-hua, HU Xu, ZOU Hao, LI Yu-lin, ZENG Zhuo-xiong. Research on Model of Ignition of Boron Particle Based on Multiple Oxide Layer Structure [J]. Acta Armamentarii, 2016, 37(12): 2242-2250. |
[12] | LI Ji-zhen, FAN Xue-zhong, ZHANG Guo-fang, YU Hong-jian, TANG Qiu-fan, FU Xiao-long. Hardener Systems of Energetic Binder PolyNIMMO [J]. Acta Armamentarii, 2016, 37(8): 1401-1408. |
[13] | HE Wei, HE Li-ming, MA Zhong-liang, XIAO Zhong-liang, GUO Yan-li. Research on Effect of Al on Curing Property of GAP Spherical Propellant by Rheological Isothemal Measuring Method [J]. Acta Armamentarii, 2016, 37(6): 1023-1029. |
[14] | WANG Chuan-hua, GUO Xiao-yan, ZOU Mei-shuai, YANG Rong-jie. Preparation and Hydro-reactivity of Ball-milled Aluminum-based Hydro-reactive Metal Materials [J]. Acta Armamentarii, 2016, 37(5): 817-822. |
[15] | YANG Hou-wen, YU Yong-gang, YE Rui. Numerical Simulation of Cook-off Characteristic of Solid Rocket Motor in Different Flame Environments [J]. Acta Armamentarii, 2015, 36(9): 1640-1646. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||