Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (6): 240739-.doi: 10.12382/bgxb.2024.0739
• Special Topics of Academic Papers at the 27th Annual Meeting of the China Association for Science and technology • Previous Articles Next Articles
WANG Jiang1,2, ZHU Ziyang1,2, LI Hongyan1,2,*(), WANG Peng1,2
Received:
2024-08-27
Online:
2025-06-28
Contact:
LI Hongyan
WANG Jiang, ZHU Ziyang, LI Hongyan, WANG Peng. An Energy-optimal Relative-angle-constrained Cooperative Guidance Method Based on Distributed Convex Optimization[J]. Acta Armamentarii, 2025, 46(6): 240739-.
Add to citation manager EndNote|Ris|BibTeX
飞行器 | 位置/m | 速度/(m·s-1) | 航迹角/deg |
---|---|---|---|
M1 | (0,0) | 800 | 0 |
M2 | (0,0) | 800 | 5 |
M3 | (0,0) | 800 | 10 |
M4 | (0,0) | 800 | 15 |
T | (0,0) | 500 | 180 |
Table 1 Initial simulation conditions
飞行器 | 位置/m | 速度/(m·s-1) | 航迹角/deg |
---|---|---|---|
M1 | (0,0) | 800 | 0 |
M2 | (0,0) | 800 | 5 |
M3 | (0,0) | 800 | 10 |
M4 | (0,0) | 800 | 15 |
T | (0,0) | 500 | 180 |
采用制导律 | 终端视线角/deg |
---|---|
本文制导律 | [19.45,9.45,-1.45,-11.45] |
文献[5]制导律 | [12.72,2.72,-7.28,-17.28] |
Table 2 Terminal LOS angles of aerial vehicles
采用制导律 | 终端视线角/deg |
---|---|
本文制导律 | [19.45,9.45,-1.45,-11.45] |
文献[5]制导律 | [12.72,2.72,-7.28,-17.28] |
采用制导律 | 总能量消耗/(m2·s-3) |
---|---|
本文制导律 | 6.42×104 |
文献[5]制导律 | 1.70×105 |
Table 3 Energy consumption of aerial vehicles
采用制导律 | 总能量消耗/(m2·s-3) |
---|---|
本文制导律 | 6.42×104 |
文献[5]制导律 | 1.70×105 |
初始仿真条件 | 正态分布 |
---|---|
飞行器速度VM/(m·s-1) | N(800,202) |
飞行器初始航迹角γ0/deg | N(10,52) |
目标速度VT/(m·s-1) | N(600,202) |
目标初始航迹角 /deg | N(150,102) |
目标初始横坐标 /m | N(6000,1002) |
目标初始纵坐标 /m | N(0,1002) |
目标加速度 /(m·s-2) | N(-49.1,4.912) |
Table 4 Intervals of variables
初始仿真条件 | 正态分布 |
---|---|
飞行器速度VM/(m·s-1) | N(800,202) |
飞行器初始航迹角γ0/deg | N(10,52) |
目标速度VT/(m·s-1) | N(600,202) |
目标初始航迹角 /deg | N(150,102) |
目标初始横坐标 /m | N(6000,1002) |
目标初始纵坐标 /m | N(0,1002) |
目标加速度 /(m·s-2) | N(-49.1,4.912) |
采用制导律 | 总能量消耗/ (m2·s-3) | 脱靶量/m | 视线角误差/deg |
---|---|---|---|
本文制导律 | 4.33×104 | 0.5196 | 0.4396 |
文献[5]制导律 | 2.26×105 | 0.5245 |
Table 5 The mean values of various performance indicators
采用制导律 | 总能量消耗/ (m2·s-3) | 脱靶量/m | 视线角误差/deg |
---|---|---|---|
本文制导律 | 4.33×104 | 0.5196 | 0.4396 |
文献[5]制导律 | 2.26×105 | 0.5245 |
拓扑是否变化 | 终端视线角/deg | 总能量消耗/(m2·s-3) |
---|---|---|
是 | [19.45,9.45,-1.45,-11.45] | 6.42×104 |
否 | [19.45,9.45,-1.45,-11.45] | 6.42×104 |
Table 6 Comparison of simulated results
拓扑是否变化 | 终端视线角/deg | 总能量消耗/(m2·s-3) |
---|---|---|
是 | [19.45,9.45,-1.45,-11.45] | 6.42×104 |
否 | [19.45,9.45,-1.45,-11.45] | 6.42×104 |
飞行器 | 位置/m | 速度/(m·s-1) | 航迹角/deg |
---|---|---|---|
M1 | (0,3000) | 800 | 0 |
M2 | (0,3000) | 800 | 5 |
M3 | (0,3000) | 800 | 10 |
M4 | (0,3000) | 800 | 15 |
T | (6000,3000) | 500 | 180 |
Table 7 The initial simulation conditions
飞行器 | 位置/m | 速度/(m·s-1) | 航迹角/deg |
---|---|---|---|
M1 | (0,3000) | 800 | 0 |
M2 | (0,3000) | 800 | 5 |
M3 | (0,3000) | 800 | 10 |
M4 | (0,3000) | 800 | 15 |
T | (6000,3000) | 500 | 180 |
马赫数 | /(rad-1) | Cd0 | /(rad-2) |
---|---|---|---|
1.5 | 27.47 | 0.575 | 38.48 |
2.0 | 23.83 | 0.443 | 30.15 |
2.5 | 21.28 | 0.383 | 26.12 |
3.0 | 19.54 | 0.352 | 24.07 |
Table 8 Aerodynamic coefficients and derivatives
马赫数 | /(rad-1) | Cd0 | /(rad-2) |
---|---|---|---|
1.5 | 27.47 | 0.575 | 38.48 |
2.0 | 23.83 | 0.443 | 30.15 |
2.5 | 21.28 | 0.383 | 26.12 |
3.0 | 19.54 | 0.352 | 24.07 |
[1] |
尤浩, 常新龙, 赵久奋, 等. 带攻击角度约束的三维领弹-从弹时间协同制导律[J]. 兵工学报, 2023, 44(11):3369-3381.
|
|
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
钱杏芳, 林瑞雄, 赵亚男. 导弹飞行力学[M]. 北京: 北京理工大学出版社, 2008:170.
|
|
|
[23] |
|
[24] |
何智川, 王江, 范世鹏, 等. 事件触发机制下具有视场约束的三维协同制导[J]. 航空学报, 2024, 45(3):223-237.
|
|
|
[25] |
杨登峰, 闫晓东. 多防御弹主动防御系统协同一致拦截[J]. 战术导弹技术, 2023(5):73-82.
|
|
|
[26] |
林德福, 王辉, 王江, 等. 战术导弹自动驾驶仪设计与制导律分析[M]. 北京: 北京理工大学出版社, 2012:159.
|
|
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
王雨辰, 王伟, 林时尧, 等. 考虑攻击时间及空间角度约束的三维自适应滑模协同制导律设计[J]. 兵工学报, 2023, 44(9):2778-2790.
|
|
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[1] | WU Jiayang, YANG Huabo, BAI Xibin, ZHANG Shifeng. Target Acquisition Probability of an Airborne Strapdown Missile at Hand-over Point [J]. Acta Armamentarii, 2025, 46(6): 240495-. |
[2] | YU Hang, LI Qingyu, DAI Keren, LI Haojie, ZOU Yao, ZHANG He. Three-dimensional Adaptive Fixed-time Multi-missile Cooperative Guidance Law [J]. Acta Armamentarii, 2024, 45(8): 2646-2657. |
[3] | ZHANG Kun, HUA Shuai, YUAN Binlin, LI Yang. Multi-platform Networked Guidance Handover Technology [J]. Acta Armamentarii, 2024, 45(7): 2171-2181. |
[4] | WU Hao, LI Dongguang, WANG Yong’an. Time-to-go Estimation Method for Anti-ship Missiles with Large Lead Angle in Three-dimensional Space [J]. Acta Armamentarii, 2024, 45(5): 1449-1459. |
[5] | WANG Wei, YU Zhichen, LIN Shiyao, YANG Jing, WANG Hong. Three-dimensional Leader-follower Cooperative Guidance Law for Maneuvering Targets [J]. Acta Armamentarii, 2024, 45(10): 3538-3554. |
[6] | WANG Yuchen, WANG Wei, LIN Shiyao, YANG Jing, WANG Shaolong, YIN Zhao. Three-dimensional Adaptive Sliding Mode Cooperative Guidance Law with Impact Time and Angle Constraints [J]. Acta Armamentarii, 2023, 44(9): 2778-2790. |
[7] | HAN Yu, SONG Tao, ZHENG Duo, LIU Xin. Unmanned Aerial Vehicle Cluster Cooperative Guidance Technology Based on Conflict Trigger Mechanism [J]. Acta Armamentarii, 2023, 44(7): 1881-1895. |
[8] | LI Guofei, TANG Qingpu, WU Yunjie. Cooperative Guidance Method of Leader and Seeker-less Follower Flight Vehicles [J]. Acta Armamentarii, 2023, 44(11): 3436-3446. |
[9] | YOU Hao, CHANG Xinlong, ZHAO Jiufen, ZHANG Youhong, WANG Shunhong. Three-dimensional Leader-follower Cooperative Guidance Law with Impact Angle Constraints [J]. Acta Armamentarii, 2023, 44(11): 3369-3381. |
[10] | YE Peng-peng, SHENG An-dong, ZHANG Jiao, WU Zhao-bin, QI Guo-qing, LI Yin-ya. Cooperative Guidance of Multi-missile with Unsustainable Connected Communication Topology [J]. Acta Armamentarii, 2018, 39(3): 474-484. |
[11] | ZHANG Chun-yan, SONG Jian-mei, HOU Bo, ZHANG Min-qiang. Cooperative Guidance Law with Impact Angle and Impact Time Constraints for Networked Missiles [J]. Acta Armamentarii, 2016, 37(3): 431-438. |
[12] | LIU Wang-sheng, PAN Hai-peng, LI Ya-an. A Fuzzy Adaptive Algorithm for Maneuvering Target Based on Current Statistical Model [J]. Acta Armamentarii, 2016, 37(11): 2037-2043. |
[13] | FU Wei, ZHENG Bin. Electrostatic Maneuvering Target Tracking Based on Fuzzy Interacting Multiple Model Particle Filter [J]. Acta Armamentarii, 2014, 35(1): 42-48. |
[14] | LIU Wang-sheng, LI Ya-an2, CUI Lin2. An Improved Algorithm for High Maneuvering Target Based on Jerk Model [J]. Acta Armamentarii, 2012, 33(4): 385-389. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||