[1] |
WANG X W, HOU J, GUO H, et al. A Miner’s rule based fatigue life prediction model for combined high and low cycle fatigue considering loading interaction effect[J]. Fatigue & Fracture of Engineering Materials & Structures, 2023, 64:1-16.
|
[2] |
孙聪. 民用航空发动机叶片损伤原位检测与评价技术[D]. 哈尔滨: 哈尔滨工业大学, 2022.
|
|
SUN C. In-situ detection and evaluation technology of civil aero-engine blade damage[D]. Harbin: Harbin Institute of Technology, 2022. (in Chinese)
|
[3] |
KONG Y, BENNETT C J, HYDE C J. A review of non-destructive testing techniques for the in-situ investigation of fretting fatigue cracks[J]. Materials & Design, 2020, 10:90-93.
|
[4] |
CHEW H B. Cohesive zone laws for fatigue crack growth:Numerical field projection of the micromechanical damage process in an elasto-plastic medium[J]. International Journal of Solids and Structures, 2014, 51(6):1410-1420.
|
[5] |
李练兵, 肖亚泽, 张萍, 等. 基于CWT-RES34的风电机组叶片裂纹状态评估[J]. 噪声与振动控制, 2024, 44(2):143-148,293.
|
|
LI L B, XIAO Y Z, ZHANG P, et al. State estimation of cracks of wind turbine blades based on CWT-RES34[J]. Noise and Vibration Control, 2024, 44(2):143-148,293. (in Chinese)
|
[6] |
ZHAO L Z, YOU R Z, REN L. Inverse finite element method and support vector regression for automated crack detection with OFDR-Distributed fiber optic sensors[J]. Measurement, 2024, 234:114916(1-17).
|
[7] |
宋水舟, 任会兰, 宁建国. 混合型加载下钢纤维混凝土损伤过程的声发射参数分析[J]. 兵工学报, 2022, 43(8):1881-1891.
|
|
SONG S Z, REN H L, NING J G. Acoustic emission parameters in the damage process of steel fiber reinforced concrete under mixed loading[J]. Acta Armamentarii, 2022, 43(8):1881-1891. (in Chinese)
|
[8] |
黄振峰, 刘永坚, 毛汉颖, 等. 基于K熵和关联维数的金属疲劳损伤过程的声发射信号特征分析[J]. 振动与冲击, 2017, 36(15):210-214.
|
|
HUANG Z F, LIU Y J, MAO H Y, et al. Feature analysis for acoustic emission signals during metal fatigue damage based on Kolmogorov entropy and correlation dimension[J]. Journal of Vibration and Shock, 2017, 36(15):210-214. (in Chinese)
|
[9] |
HA M Y, KIM J H, KIM S W. Crack detection in upsetting of aluminum alloy using acoustic emission monitoring technology[J]. The International Journal of Advanced Manufacturing Technology, 2023, 124:2823-2834.
|
[10] |
张治衡. 基于声发射技术的航空发动机叶片损伤监测预示方法研究[D]. 北京: 北京化工大学, 2019.
|
|
ZHANG Z H. Study on the monitoring of aviation engine blade damage based on acoustic emission technology[D]. Beijing: Beijing University of Chemical Technology, 2019. (in Chinese)
|
[11] |
廖力达, 向旭宏, 舒王咏, 等. 基于声发射Ib值分析的渗铝321钢损伤特性研究[J]. 仪器仪表学报, 2024, 45(1):211-220.
|
|
LIAO L D, XIANG X H, SHU W Y, et al. Study on damage characteristics of aluminized 321 steel based on acoustic emission Ib-value analysis[J]. Chinese Journal of Scientific Instrument, 2024, 45(1):211-220.(in Chinese)
|
[12] |
门进杰, 李东杰, 兰涛, 等. 2205双相不锈钢疲劳损伤声发射研究[J]. 结构工程师, 2023, 39(2):142-153.
|
|
MEN J J, LI D J, LAN T, et al. Acoustic emission study on fatigue damage of 2205 duplex stainless steel[J]. Structural Engineers, 2023, 39(2):142-153.(in Chinese)
|
[13] |
SHI S R, WU G Y, CHEN H, et al. Acoustic emission monitoring of fatigue crack growth in hadfield steel[J]. Sensors (Basel,Switzerland), 2023, 23(14):1-18.
|
[14] |
ZHANG Z H, YANG G A, HU K. Prediction of fatigue crack growth in gas turbine engine blades using acoustic emission[J]. Sensors, 2018, 18(5):1311-1321.
|
[15] |
YAN L, FAN J K. In-situ SEM study of fatigue crack initiation and propagation behavior in 2524 aluminum alloy[J]. Materials & Design, 2016, 110:92-601.
|
[16] |
MADHAV B, ALI A, ALEXANDER B, et al. Acoustic emission monitoring for necking in sheet metal forming[J]. Journal of Materials Processing Technology, 2022, 310:117758(1-15).
|
[17] |
JAEWOONG P, SUNG J K, YOUNG D L, et al. Real-time monitoring of stress corrosion cracking in 304 L stainless steel pipe using acoustic emission[J]. Journal of Nuclear Materials, 2022, 571:1881-1891.
|
[18] |
CHAI M Y, ZHANG Z X, DUAN Q, et al. Assessment of fatigue crack growth in 316LN stainless steel based on acoustic emission entropy[J]. International Journal of Fatigue, 2018, 109:1-15.
|
[19] |
CHAI M Y, ZHANG Z X, DUAN Q. A new qualitative acoustic emission parameter based on Shannon’s entropy for damage monitoring[J]. Mechanical Systems and Signal Processing, 2018, 100:6-17.
|
[20] |
KESHTGAR A, SAUERBRUNN C M, MODARRES M. Structural reliability prediction using acoustic emission-based modeling of fatigue crack growth[J]. Applied Sciences, 2018, 8(8):12-25.
|
[21] |
ZHAO K, YANG D X, GONG C. Evaluation of internal microcrack evolution in red sandstone based on time-frequency domain characteristics of acoustic emission signals[J]. Construction and Building Materials, 2020, 260:1204315(1-17).
|
[22] |
HE K F, XIAO S W, LI X J. Time-frequency characteristics of acoustic emission signal for monitoring of welding structural state using Stockwell transform[J]. The Journal of the Acoustical Society of America, 2019, 145(1):4-19.
|