Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (6): 240533-.doi: 10.12382/bgxb.2024.0533
Previous Articles Next Articles
WANG Zhanxuan1, LI Xintian1, XU Lizhi1,*(), DU Zhonghua1,2,**(
)
Received:
2024-07-02
Online:
2025-06-28
Contact:
XU Lizhi, DU Zhonghua
CLC Number:
WANG Zhanxuan, LI Xintian, XU Lizhi, DU Zhonghua. Comparative Study on Predictive Models for Radial Velocities of Fragments after PELE Impacting on Target Plates[J]. Acta Armamentarii, 2025, 46(6): 240533-.
Add to citation manager EndNote|Ris|BibTeX
材料 | ρ/(g·cm-3) | c/(km·s-1) | S1 | Grüneisen 常数 | E/GPa | 拉伸主 应变 | 拉伸主应 力/GPa | 断裂软化 算法 | 随机失效 算法 | 侵蚀应变 |
---|---|---|---|---|---|---|---|---|---|---|
钨合金 | 18.00 | 4.029 | 1237 | 0 | 360.0 | 0.035 | 2.8 | 是 | 是 | 0.6 |
A-G3铝 | 2.650 | 5.176 | 1.350 | 1.97 | 63.90 | 否 | 否 | 0.8 | ||
PE | 9.200 | 2.187 | 1.481 | 1.64 | 1.060 | 否 | 否 | 0.8 | ||
尼龙[ | 1.130 | 2.290 | 1.630 | 0.87 | 23.00 | 否 | 否 | 0.8 | ||
XC48钢 | 7.823 | 4.797 | 1.490 | 0.00 | 201.0 | 否 | 否 | |||
A-U4G铝 | 2.800 | 5.106 | 1.350 | 2.00 | 74.00 | 否 | 否 |
Table 1 Material parameters
材料 | ρ/(g·cm-3) | c/(km·s-1) | S1 | Grüneisen 常数 | E/GPa | 拉伸主 应变 | 拉伸主应 力/GPa | 断裂软化 算法 | 随机失效 算法 | 侵蚀应变 |
---|---|---|---|---|---|---|---|---|---|---|
钨合金 | 18.00 | 4.029 | 1237 | 0 | 360.0 | 0.035 | 2.8 | 是 | 是 | 0.6 |
A-G3铝 | 2.650 | 5.176 | 1.350 | 1.97 | 63.90 | 否 | 否 | 0.8 | ||
PE | 9.200 | 2.187 | 1.481 | 1.64 | 1.060 | 否 | 否 | 0.8 | ||
尼龙[ | 1.130 | 2.290 | 1.630 | 0.87 | 23.00 | 否 | 否 | 0.8 | ||
XC48钢 | 7.823 | 4.797 | 1.490 | 0.00 | 201.0 | 否 | 否 | |||
A-U4G铝 | 2.800 | 5.106 | 1.350 | 2.00 | 74.00 | 否 | 否 |
编号 | 弹芯材料 | 靶板材料 | 靶板厚 度/mm | 冲击速度/ (m·s-1) |
---|---|---|---|---|
1 | A-G3铝 | A-U4G铝 | 3 | 300~2 700 |
2 | A-G3铝 | XC 48钢 | ||
3 | PE | A-U4G铝 | ||
4 | PE | XC 48钢 | ||
5 | 尼龙 | A-U4G铝 | ||
6 | 尼龙 | XC 48钢 |
Table 2 Numerical model parameters
编号 | 弹芯材料 | 靶板材料 | 靶板厚 度/mm | 冲击速度/ (m·s-1) |
---|---|---|---|---|
1 | A-G3铝 | A-U4G铝 | 3 | 300~2 700 |
2 | A-G3铝 | XC 48钢 | ||
3 | PE | A-U4G铝 | ||
4 | PE | XC 48钢 | ||
5 | 尼龙 | A-U4G铝 | ||
6 | 尼龙 | XC 48钢 |
靶板材料 | 碰撞压力仿真结果 | 最终碰撞压力对比 |
---|---|---|
A-U4G铝 | | |
XC 48钢 | | |
Table 3 Impact pressure curve at different velocities(aluminium filling)
靶板材料 | 碰撞压力仿真结果 | 最终碰撞压力对比 |
---|---|---|
A-U4G铝 | | |
XC 48钢 | | |
弹芯材料 | 靶板材料 | 碰撞压力仿真结果 | 最终碰撞压力对比 |
---|---|---|---|
PE | A-U4G铝 | | |
XC 48钢 | | | |
尼龙 | A-U4G铝 | | |
XC 48钢 | | |
Table 4 Imapct pressure curves at different velocities(PE and nylon filling)
弹芯材料 | 靶板材料 | 碰撞压力仿真结果 | 最终碰撞压力对比 |
---|---|---|---|
PE | A-U4G铝 | | |
XC 48钢 | | | |
尼龙 | A-U4G铝 | | |
XC 48钢 | | |
靶板材料 | 冲击速度/(m·s-1) | |
---|---|---|
300 | 2700 | |
A-U4G铝 | 0.79 | 12.37 |
XC 48钢 | 0.87 | 15.84 |
Table 5 Pressure of PELE impacting on target plate with nylon filling GPa
靶板材料 | 冲击速度/(m·s-1) | |
---|---|---|
300 | 2700 | |
A-U4G铝 | 0.79 | 12.37 |
XC 48钢 | 0.87 | 15.84 |
模型 | 碰撞压力 | 径向压力 | 破片停止加速 |
---|---|---|---|
3 | pb=ρaca(ub-ua)+ρas | σr=σx,f | εr,lim(t)= |
4 | pb=ρaca(ub-ua)+ρas | σr=σx,f | εmax=0.035 |
Table 6 Two calculation models
模型 | 碰撞压力 | 径向压力 | 破片停止加速 |
---|---|---|---|
3 | pb=ρaca(ub-ua)+ρas | σr=σx,f | εr,lim(t)= |
4 | pb=ρaca(ub-ua)+ρas | σr=σx,f | εmax=0.035 |
编号 | 弹芯 | 靶板 | 冲击 速度/ (m·s-1) | |||
---|---|---|---|---|---|---|
密度/ (g·cm-3) | 泊松 比 | 弹性模 量/GPa | 密度/ (g·cm-3) | 厚度/ mm | ||
7 | 1.09 | 0.45 | 10.7 | 7.85 | 2 | 632 |
8 | 1.09 | 0.45 | 10.7 | 711 | ||
9 | 1.09 | 0.45 | 10.7 | 811 | ||
10 | 1.09 | 0.45 | 10.7 | 890 | ||
11 | 0.96 | 0.40 | 28.3 | 775 | ||
12 | 1.40 | 0.33 | 68.1 | 802 |
Table 7 Experimental condition parameters in Ref.[23]
编号 | 弹芯 | 靶板 | 冲击 速度/ (m·s-1) | |||
---|---|---|---|---|---|---|
密度/ (g·cm-3) | 泊松 比 | 弹性模 量/GPa | 密度/ (g·cm-3) | 厚度/ mm | ||
7 | 1.09 | 0.45 | 10.7 | 7.85 | 2 | 632 |
8 | 1.09 | 0.45 | 10.7 | 711 | ||
9 | 1.09 | 0.45 | 10.7 | 811 | ||
10 | 1.09 | 0.45 | 10.7 | 890 | ||
11 | 0.96 | 0.40 | 28.3 | 775 | ||
12 | 1.40 | 0.33 | 68.1 | 802 |
编号 | 弹芯 | 靶板 | 冲击 速度/ (m·s-1) | ||||
---|---|---|---|---|---|---|---|
材料 | 密度/ (g·cm-3) | 泊松 比 | 密度/ (g·cm-3) | 厚度/ mm | |||
13 | 6061铝 | 2.70 | 0.33 | 2.800 | 3 | 798 | |
14 | 806 | ||||||
15 | 聚四氟 乙烯 | 2.15 | 0.41 | 802 | |||
16 | 809 |
Table 8 Experimental condition parameters in Ref.[21]
编号 | 弹芯 | 靶板 | 冲击 速度/ (m·s-1) | ||||
---|---|---|---|---|---|---|---|
材料 | 密度/ (g·cm-3) | 泊松 比 | 密度/ (g·cm-3) | 厚度/ mm | |||
13 | 6061铝 | 2.70 | 0.33 | 2.800 | 3 | 798 | |
14 | 806 | ||||||
15 | 聚四氟 乙烯 | 2.15 | 0.41 | 802 | |||
16 | 809 |
Fig.13 Comparison of calculated results of improved radial velocity model,impact model,and elastic wave model, as well as experimental results[5]( A-U4G Al filling)
Fig.14 Comparison of calculated results of improved radial velocity model,impact model, and elastic wave model,as well as experimental results[5] (PE filling)
[1] |
|
[2] |
|
[3] |
朱建生, 范智, 杜忠华. 外壳材料对PELE作用效果的影响[J]. 兵器材料科学与工程, 2010, 33(6):14-16.
|
|
|
[4] |
|
[5] |
|
[6] |
|
[7] |
朱建生, 赵国志, 杜忠华. 装填材料对PELE效应的影响[J]. 弹道学报, 2007, 19(2):62-65.
|
|
|
[8] |
|
[9] |
|
[10] |
张甲浩, 王海福, 葛超, 等. 活性PELE侵彻钢筋混凝土靶扩孔增强行为[J]. 兵工学报, 2025, 46 (3):240307.
|
|
|
[11] |
张洪成, 尹建平, 王志军. 着靶角对PELE横向效应的影响[J]. 兵器材料科学与工程, 2012, 35(4):46-49.
|
|
|
[12] |
刘宇珩, 霸书红, 杜忠华, 等. 着靶角度对PELE侵彻钢筋混凝土扩孔效应的影响研究[J]. 弹道学报, 2022, 34(4):15-22.
|
|
|
[13] |
|
[14] |
姬鹏远. 侵彻膨胀弹终点效应数值模拟研究[D]. 北京: 北京理工大学, 2007.
|
|
|
[15] |
凃胜元, 沈晓军, 王军波, 等. 着速和靶厚对钢弹体PELE侵彻后效影响的实验研究[J]. 弹箭与制导学报, 2010, 30(3):69-71.
|
|
|
[16] |
朱建生, 赵国志, 杜忠华, 等. 小口径PELE作用薄靶板影响因素的实验研究[J]. 实验力学, 2007, 22(5):505-510.
|
|
|
[17] |
朱建生, 赵国志, 杜忠华, 等. 靶板厚度对横向效应增强型侵彻体作用效果的影响[J]. 南京理工大学学报(自然科学版), 2009, 33(4):474-479.
|
|
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
范少博, 陈智刚, 郭光全, 等. 装填材料对PELE侵彻混凝土效能影响研究[J]. 兵器材料科学与工程, 2012, 35(5):47-50.
|
|
|
[23] |
|
[24] |
|
[25] |
|
[26] |
张甲浩, 郭萌萌, 周晟, 等. 活性横向增强弹靶后横向效应实验与数值模拟[J]. 兵工学报, 2024, 45(7):2270-2281.
|
|
|
[27] |
|
[28] |
杜忠华, 宋丽丽. 横向效应增强型侵彻体撞击金属薄板理论模型[J]. 南京理工大学学报(自然科学版), 2011, 35(6):822-826.
|
|
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
王礼立. 应力波基础[M]. 北京: 国防工业出版社, 1985.
|
|
|
[35] |
王仲仁, 苑世剑. 弹性与塑性力学基础[M]. 哈尔滨: 哈尔滨工业大学出版社, 1997.
|
|
|
[36] |
|
[1] | ZHANG Jiahao, WANG Haifu, GE Chao, ZHOU Sheng, YU Qingbo. Enhanced Opening Behavior of Reactive PELE Penetrating into Reinforced Concrete Target [J]. Acta Armamentarii, 2025, 46(3): 240307-. |
[2] | WANG Yajun, YU Rui, LI Weibing, LI Wenbin. Research on the Penetration Characteristics of Rod-shaped EFP and Its Influencing Factors [J]. Acta Armamentarii, 2024, 45(S1): 174-182. |
[3] | GUO Mengmeng, WANG Haifu, ZHANG Jiahao, ZHOU Sheng, YU Qingbo. Simulation Research on Damage Effect of PELE Penetrating Reinforced Concrete [J]. Acta Armamentarii, 2024, 45(S1): 89-96. |
[4] | ZHANG Jiahao, GUO Mengmeng, ZHOU Sheng, YU Qingbo. Experimental and Numerical Research on Behind-plate Enhanced Lateral Effect of Reactive PELE [J]. Acta Armamentarii, 2024, 45(7): 2270-2281. |
[5] | WANG Yili, LI Changsheng, WANG Xin, ZHANG He, WANG Xiaofeng. A Layer Counting Method for Penetration Fuze Based on Magnetic Anomaly Detection [J]. Acta Armamentarii, 2024, 45(3): 695-704. |
[6] | FENG Wei, CUI Donghua, LIU Haixiao, ZHOU Mo, LI Heng, HU Zhipeng. Influence of Warhead Parameters of Munitions Against USV Group on Combat Effectiveness [J]. Acta Armamentarii, 2022, 43(S2): 26-31. |
[7] | DAI Xianghui, DUAN Jian, SHEN Zikai, WANG Kehui, LI Mingrui, LI Pengjie, ZHENG Yafeng, ZHOU Gang. Experiment of Slow Cook-off Response Characteristics of Penetrator [J]. Acta Armamentarii, 2020, 41(2): 291-297. |
[8] | XING Boyang, HOU Yunhui, LI Taihua, ZHANG Dongjiang, LIU Rongzhong, GUO Rui. Analysis of Kinetic Energy of Behind-armor Debris Generated during the Normal Penetration of EFP into Armor Steel [J]. Acta Armamentarii, 2019, 40(10): 2014-2021. |
[9] | LI Peng, YUAN Bao-hui, SUN Xing-yun, LI Gang, LI Ji-zhen. Experimental Research on Eccentric Initiation MEFP Warhead [J]. Acta Armamentarii, 2017, 38(3): 447-453. |
[10] | LUO Rong-mei, HUANG De-wu, YANG Ming-chuan, HUANG Hai, LI Fu-ying. Research on Melted and Rapidly Solidified Layer on the Surface of Crater Penetrated by Long Tungsten Rod [J]. Acta Armamentarii, 2015, 36(7): 1167-1175. |
[11] | JIN Xue-ke, YU Qing-bo, ZHENG Yuan-feng, WANG Hai-fu. Damage Effects of High Velocity Penetrator on Chemical Submunition Payloads [J]. Acta Armamentarii, 2015, 36(3): 437-442. |
[12] | CHEN Cheng, YUAN Xu-long, LIU Chuan-long. Experimental Investigation on the Supercavitation models Penetrating into Solid Medium and the Influence Factors [J]. Acta Armamentarii, 2015, 36(2): 299-304. |
[13] | ZHAO Chang-xiao, LONG Yuan, JI Chong, Xu Dao-feng, GAO Fu-yin, LU Liang. Numerical Simulation and Experimental Research on Integral Multiple Explosively Formed Projectile Warhead [J]. Acta Armamentarii, 2013, 34(11): 1392-1397. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||