[1] |
邹明胤, 朱晓敏, 包卫东, 等. 有人/无人集群任务规划系统集成框架[J]. 指挥与控制学报, 2023, 9(1):45-57.
|
|
ZOU M Y, ZHU X M, BAO W D, et al. Integration framework for manned/unmanned swarm mission planning systems[J]. Journal of Command and Control, 2023, 9(1):45-57. (in Chinese)
|
[2] |
李军, 陈士超. 无人机蜂群关键技术发展综述[J]. 兵工学报, 2023, 44(9):2533-2545.
|
|
LI J, CHEN S C. Overview of key technology and its development of drone swarm[J]. Acta Armamentarii, 2023, 44(9):2533-2545. (in Chinese)
|
[3] |
李亿俍, 李娟, 刘畅, 等. 微分博弈在无人机集群攻防中的应用研究[J]. 无人系统技术, 2022, 5(5):39-50.
|
|
LI Y L, LI J, LIU C, et al. Research on application of differential game in attack and defense of UAV swarms[J]. Unmanned Systems Technology, 2022, 5(5):39-50. (in Chinese)
|
[4] |
陈谋, 马浩翔, 雍可南, 等. 无人机安全飞行控制综述[J]. 机器人, 2023, 45(3):345-366.
|
|
CHEN M, MA H X, YONG K N, et al. Safety flight control of UAV:a survey[J]. Robot, 2023, 45(3):345-366. (in Chinese)
|
[5] |
潘泉, 郭亚宁, 吕洋, 等. 无人机系统自主安全:定义、建模与分级[J]. 中国科学:信息科学, 2023, 53(8):1608-1628.
|
|
PAN Q, GUO Y N, LÜ Y, et al. Autonomous safety and security of UAV systems:definition,modeling,and gradation[J]. Scientia Sinica Informationis, 2023, 53(8):1608-1628. (in Chinese)
|
[6] |
郭雷, 余翔, 张霄, 等. 无人机安全控制系统技术:进展与展望[J]. 中国科学:信息科学, 2020, 50(2):184-194.
|
|
GUO L, YU X, ZHANG X, et al. Safety control system technologies for UAVs:review and prospect[J]. SCIENTIA SINICA Informationis, 2020, 50(2):184-194. (in Chinese)
|
[7] |
郭雷, 朱玉凯, 乔建忠, 等. 无人系统生存智能与安全、免疫、绿色控制技术[J]. 航空学报, 2022, 43(10):527129.
|
|
GUO L, ZHU Y K, QIAO J Z, et al. Survival intelligence and safety,immunity and green control technologies for unmanned systems[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10):527129. (in Chinese)
|
[8] |
江碧涛, 温广辉, 周佳玲, 等. 智能无人集群系统跨域协同技术研究现状与展望[J]. 中国工程科学, 2024, 26(1):117-126.
|
|
JIANG B T, WEN G H, ZHOU J L, et al. Cross-domain cooperative technology of intelligent unmanned swarm systems:current status and prospects[J]. Strategic Study of CAE, 2024, 26(1):117-126. (in Chinese)
|
[9] |
蔡云鹏, 周大鹏, 丁江川. 具有防撞安全约束的无人机集群智能协同控制[J]. 航空学报, 2024, 45(5):529683.
|
|
CAI Y P, ZHOU D P, DING J C. Intelligent collaborative control of UAV swarms with collision avoidance safety constraints[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5):529683. (in Chinese)
|
[10] |
郑多, 初治辰, 林德福, 等. 考虑集群尾涡气动耦合效应飞行安全约束的协同制导技术[J]. 航空学报, 2024, 45(18):329906.
|
|
ZHENG D, CHU Z C, LIN D F, et al. Cooperative guidance technique considering flight safety constraints of cluster wake vortex aerodynamic coupling effects[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(18):329906. (in Chinese)
|
[11] |
YU Z Q, ZHANG Y, JIANG B, et al. Composite adaptive disturbance observer-based decentralized fractional-order fault-tolerant control of networked UAVs[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems, 2020, 52(2):799-813.
|
[12] |
YU Z Q, ZHANG Y, JIANG B, et al. A review on fault-tolerant cooperative control of multiple unmanned aerial vehicles[J]. Chinese Journal of Aeronautics, 2022, 35(1):1-18.
|
[13] |
赵丹, 温广辉, 黄廷文. 群体智能系统安全协同控制研究[J]. 控制工程, 2023, 30(8):1419-1424.
|
|
ZHAO D, WEN G H, HUANG T W. Secure cooperative control of swarm intelligent systems[J]. Control Engineering of China, 2023, 30(8):1419-1424. (in Chinese)
|
[14] |
余自权, 崔玉伟, 杨海川, 等. 网络攻击下无人机集群安全协同控制技术[J]. 海军航空大学学报, 2023, 38(6):457-465,482.
|
|
YU Z Q, CUI Y W, YANG H C, et al. Cooperative security control of swarm unmanned aerial vehicles under cyber attacks[J]. Journal of Naval Aviation University, 2023, 38(6):457-465,482. (in Chinese)
|
[15] |
CHEN J, SU K Y, SHEN S J. Real-time safe trajectory generation for quadrotor flight in cluttered environments[C]// Proceedings of 2015 IEEE International Conference on Robotics and Biomimetics. Zhuhai, China: IEEE,2015:1678-1685.
|
[16] |
CHEN J, LIU T B, SHEN S J. Online generation of collision-free trajectories for quadrotor flight in unknown cluttered environments[C]// Proceedings of 2016 IEEE International Conference on Robotics and Automation.Zhuhai, China: IEEE,2016:1476-1483.
|
[17] |
WANG Z M, ZOU F, MA Z W, et al. Flight corridor construction method for fixed-wing UAV obstacle avoidance[C]//Proceedings of 2022 International Conference on Autonomous Unmanned Systems.Xi’an, China:Springer, 2022,1010:1808-1818.
|
[18] |
GAO F, WU W, GAO W L, et al. Flying on point clouds:online trajectory generation and autonomous navigation for quadrotors in cluttered environments[J]. Journal of Field Robotics, 2019, 36(4):710-733.
|
[19] |
REN Y F, ZHU F C, LIU W Y, et al. Bubble planner:planning high-speed smooth quadrotor trajectories using receding corridors[C]// Proceedings of 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems.Kyoto, Japan:IEEE,2022:6332-6339.
|
[20] |
ZHOU X, WEN X Y, WANG Z P, et al. Swarm of micro flying robots in the wild[J]. Science Robotics, 2022, 7(66):eabm5954.
|
[21] |
QUAN Q, FU R, LI M X, et al. Practical distributed control for VTOL UAVs to pass a virtual tube[J]. IEEE Transactions on Intelligent Vehicles, 2022, 7(2):342-353.
|
[22] |
HE X, QUAN Q. Air traffic network generation for UAVs at a low altitude based on digital maps[C]// Proceedings of The 39th Chinese Control Conference.Shenyang, China: IEEE,2020:6827-6832.
|
[23] |
QUAN Q, LI M X, FU R. Sky highway design for dense traffic[J]. IFAC-PapersOnLine. 2021, 54(2):140-145.
|
[24] |
MAO P D, FU R, QUAN Q. Optimal virtual tube planning and control for swarm robotics[J]. International Journal of Robotics Research, 2023, 43(5):602-627.
|
[25] |
LÜ S L, GAO Y, CHE J X, et al. Autonomous drone racing:time-optimal spatial iterative learning control within a virtual tube[C]// Proceedings of 2023 IEEE International Conference on Robotics and Automation.London, UK:IEEE,2023:3197-3203.
|
[26] |
GAO Y, BAI C G, QUAN Q. Robust distributed control within a curve virtual tube for a robotic swarm under self-localization drift and precise relative navigation[J]. International Journal of Robust and Nonlinear Control, 2023, 33(16):9489-9513.
|
[27] |
GAO Y, BAI C G, QUAN Q. Distributed control for a multiagent system to pass through a connected quadrangle virtual tube[J]. IEEE Transactions on Control of Network Systems, 2023, 10(2):693-705.
|
[28] |
GAO Y, BAI C G, ZHENG L, et al. Multi-UAV cooperative target encirclement within an annular virtual tube[J]. Aerospace Science and Technology, 2022,128:107800.
|
[29] |
MAO P D, QUAN Q. Making robotics swarm flow more smoothly:a regular virtual tube model[C]// Proceedings of 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems.Kyoto, Japan:IEEE,2022:4498-4504.
|
[30] |
QUAN Q, GAO Y, BAI C G. Distributed control for a robotic swarm to pass through a curve virtual tube[J]. Robotics and Autonomous Systems, 2023,162:104368.
|
[31] |
杨健. 无人机集群系统空域冲突消解方法研究[D]. 长沙: 国防科学技术大学, 2019.
|
|
YANG J. Study on the airspace conflict resolution problem of unmanned aerial vehicle swarm systems[D]. Changsha: National University of Defense Technology, 2019. (in Chinese)
|
[32] |
FIORINI P, SHILLER Z. Motion planning in dynamic environments using velocity obstacles[J]. International Journal of Robotics Research, 1998, 17(7):760-772.
|
[33] |
何信, 石宗英, 钟宜生. 基于速度障碍的多无人船协同避碰[J]. 航空学报, 2023, 44(增刊2):729758.
|
|
HE X, SHI Z Y, ZHONG Y S. Multi-USV cooperative collision avoidance based on velocity obstacle[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2):729758.. (in Chinese)
|
[34] |
van den BERG J, LIN M, MANOCHA D. Reciprocal velocity obstacles for real-time multi-agent navigation[C]// Proceedings of 2008 IEEE International Conference on Robotics and Automation.Pasadena, Canada:IEEE,2008:1928-1935.
|
[35] |
van den BERG J, GUY S, LIN M, et al. Reciprocal n-body collision avoidance:robotics research[C]//Proceedings of 14th International Symposium on Robotics Research.Lucerne, Switzerland:Springer, 2011,70:3-19.
|
[36] |
ALONSO-MORA J, BREITENMOSER A, BEARDSLEY P, et al. Reciprocal collision avoidance for multiple car-like robots[C]// Proceedings of 2012 IEEE International Conference on Robotics and Automation.St Paul,MN, US: IEEE,2012:360-366.
|
[37] |
HENNES D, CLAES D, MEEUSSEN W, et al. Multi-robot collision avoidance with localization uncertainty[C]// Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems. Valencia, Spain:International Foundation for Autonomous Agents and Multiagent Systems,2012:147-154.
|
[38] |
FULGENZI C, SPALANZANI A, LAUGIER C. Dynamic obstacle avoidance in uncertain environment combining PVOs and occupancy grid[C]// Proceedings of the 2007 IEEE International Conference on Robotics and Automation. Rome,Italy: IEEE,2007:1610.
|
[39] |
GORANTLA B, GHOSH S. Right-of-Way-based probabilistic acceleration velocity obstacle[C]// Proceedings of the 2022 IEEE 61st Conference on Decision and Control.Cancun, Mexico:IEEE,2022:3740-3745.
|
[40] |
LIANG J, QIAO Y L, GUAN T R, et al. OF-VO:efficient navigation among pedestrians using commodity sensors[J]. IEEE Robotics and Automation Letters, 2021, 6(4):6148-6155.
|
[41] |
GOPALAKRISHNAN B, SINGH A, KAUSHIK M, et al. PRVO:probabilistic reciprocal velocity obstacle for multi robot navigation under uncertainty[C]// Proceedings of 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems.Vancouver, Canada:IEEE,2017:1089-1096.
|
[42] |
KLUGE B. Recursive agent modeling with probabilistic velocity obstacles for mobile robot navigation among humans[C]// Proceedings of 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems.Los Angeles,CA, US: IEEE,2003:376-381.
|
[43] |
KHARE I, POONGANAM J, GOPALAKRISHNAN B, et al. Probabilistic inverse velocity obstacle for free flying quadrotors[C]// Proceedings of 2021 European Control Conference.Delft, Netherlands:IEEE,2021:1711-1718.
|
[44] |
郭华, 郭小和. 改进速度障碍法的无人机局部路径规划算法[J]. 航空学报, 2023, 44(11):327586.
|
|
GUO H, GUO X H. Local path planning algorithm for UAV based on improved velocity obstacle method[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(11):327586. (in Chinese)
|
[45] |
秦明星, 王忠, 李海龙, 等. 基于分布式模型预测的无人机编队避障控制[J]. 北京航空航天大学学报, 2024, 50(6):1969-1981.
|
|
QIN M X, WANG Z, LI H L, et al. DMPC for formation of multi-UAV with collision/obstacle avoidance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(6):1969-1981. (in Chinese)
|
[46] |
张宏宏, 甘旭升, 李昂, 等. 基于速度障碍法的无人机避障与航迹恢复策略[J]. 系统工程与电子技术, 2020, 42(8):1759-1767.
|
|
ZHANG H H, GAN X S, LI A, et al. UAV obstacle avoidance and track recovery strategy based on velocity obstacle method[J]. Systems Engineering and Electronics, 2020, 42(8):1759-1767. (in Chinese)
|
[47] |
ZHENG Z W, LI J Z, GUAN Z Y, et al. Constrained moving path following control for uav with robust control barrier function[J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10(7):1557-1570.
|
[48] |
HEGDE A, GHOSE D. Multi-UAV collaborative transportation of payloads with obstacle avoidance[J]. IEEE Control Systems Letters, 2022,6:926-931.
|
[49] |
HEGDE A, GHOSE D. Collaborative guidance of uav-transported semi-flexible payloads in environments with obstacles[C]// Proceedings of 2021 60th IEEE Conference on Decision and Control.Austin,TX, US: IEEE,2021:490-495.
|
[50] |
BORRMANN U, WANG L, AMES A D, et al. Control barrier certificates for safe swarm behavior[J]. IFAC-PapersOnLine, 2015, 48(27):68-73.
|
[51] |
SQUIRES E, PIERPAOLI P, KONDA R, et al. Composition of safety constraints for fixed-wing collision avoidance amidst limited communications[J]. Journal of Guidance Control and Dynamics, 2022, 45(4):714-725.
|
[52] |
SQUIRES E, PIERPAOLI P, EGERSTEDT M. Constructive barrier certificates with applications to fixed-wing aircraft collision avoidance[C]// Proceedings of 2018 IEEE Control on Control Technology and Applications.Copenhagen, Denmark:IEEE,2018:1656-1661.
|
[53] |
WANG L, AMES A D, EGERSTEDT M. Safety barrier certificates for collisions-free multirobot systems[J]. IEEE Transactions on Robotics, 2017, 33(3):661-674.
|
[54] |
HIRSHBERG T, VEMPRALA S, KAPOOR A. Safety considerations in deep control policies with safety barrier certificates under uncertainty[C]// Proceedings of 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems.Las Vegas,NV, US: IEEE,2020:6245-6251.
|
[55] |
LI X D, YIN X, LI S Y. Cooperative event triggered control for multi-robot systems with collision avoidance[C]// Proceeding of the 40th Chinese Control Conference.Shanghai, China: IEEE,2021:5460-5465.
|
[56] |
FU J J, WEN G H, YU X H, et al. Distributed formation navigation of constrained second-order multiagent systems with collision avoidance and connectivity maintenance[J]. IEEE Transactions on Cybernetics, 2022, 52(4):2149-2162.
|
[57] |
OLFATI-SABER R, Flocking for multi-agent dynamic systems:algorithms and theory[J]. IEEE Transactions on Automatic Control, 2006, 51(3):401-420.
|
[58] |
OLFATI-SABER R, MURRAY R M. Flocking with obstacle avoidance:cooperation with limited communication in mobile networks[C]// Proceedings of 42nd IEEE Conference on Decision and Control.Maui, HI,US: 2003,2022-2028.
|
[59] |
GAO Y, WEI D H, BAI C G, et al. Semi-autonomous multi-copter formation control under one remote pilot in GPS-denied environment[C]// Proceedings of 2021 International Conference on Autonomous Unmanned Systems. Singapore:Springer,2022:368-378.
|
[60] |
AZARI M M, ROSAS F, POLLIN S. Cellular connectivity for UAVs:network modeling,performance analysis,and design Guidelines[J]. IEEE Transactions on Wireless Communications, 2019, 18(7):3366-3381.
|
[61] |
段碧琦. 无人机集群通信中继规划方法研究[D]. 长沙: 国防科技大学, 2022.
|
|
DUAN B Q. Communication relay planning methods for unmanned aerial vehicle swarms[D]. Changsha: National University of Defense Technology, 2022. (in Chinese)
|
[62] |
BAI G H, LI Y J, FANG Y N, et al. Network approach for resilience evaluation of a UAV swarm by considering communication limits[J]. Reliability Engineering & System Safety, 2020,193:106602.
|
[63] |
颜志, 易正伦, 欧阳博, 等. 无人机集群联合拓扑控制的智能路由规划方法[J]. 通信学报, 2024, 45(2):137-149.
|
|
YAN Z, YI Z L, OUYANG B, et al. Intelligent Route Planning Method with Jointing Topology Control of UAV Swarm[J]. Journal on Communications, 2024, 45(2):137-149. (in Chinese)
|
[64] |
HESPE C, SAADABADI H, DATAR A, et al. A decomposition approach to multiagent systems with bernoulli packet loss[J]. IEEE Transactions on Control of Network Systems, 2024, 11(1):210-220.
|
[65] |
LI Y M, LAM J, LIN H. On stability and performance of the optimal linear filter over Gilbert-Elliott channels with unobservable packet losses[J]. IEEE Transactions on Control of Network Systems, 2022, 9(2):1029-1039.
|
[66] |
杨光红, 芦安洋, 安立伟. 网络攻击下的信息物理系统安全状态估计研究综述[J]. 控制与决策, 2023, 38(8):2093-2105.
|
|
YANG G H, LU A Y, AN L W. A survey on secure state estimation of cyber-physical systems under cyber attacks[J]. Control and Decision, 2023, 38(8):2093-2105. (in Chinese)
|
[67] |
SANDBERG H, GUPTA V, JOHANSSON K H. Secure networked control systems[J]. Annual Review of Control,Robotics,and Autonomous Systems, 2022,5:445-464.
|
[68] |
朱建良, 王立雅, 薄煜明. 行人GNSS/PDR组合导航优化估计方法[J]. 兵工学报. 2023, 44(10):3137-3145.
|
|
ZHU J L, WANG L Y, BO Y M. Pedestrian GNSS/PDR integrated navigation system with graph optimization[J]. Acta Armamentarii, 2023, 44(10):3137-3145. (in Chinese)
|
[69] |
ZHOU X, WANG Z P, YE H K, et al. Ego-planner:an ESDF-free gradient-based local planner for quadrotors[J]. IEEE Robotics and Automation Letters, 2020, 6(2):478-485.
|
[70] |
王亚静. 复杂环境下固定翼无人机集群分布式规避控制研究[D]. 长沙: 国防科技大学, 2021.
|
|
WANG Y J. Distributed collision avoidance control for fixed-wing UAV swarms in cluttered environment[D]. Changsha: National University of Defense Technology, 2021. (in Chinese)
|
[71] |
王祥科, 沈林成, 李杰. 无人机集群控制理论与方法[M]. 上海: 上海交通大学出版社, 2021.
|
|
WANG X K, SHEN L C, LI J. UAV swarms control theory and methods[M]. Shanghai: Shanghai Jiao Tong University Press, 2021.
|
[72] |
CHEN Y, HONG J H, LIU C C. Modeling of intrusion and defense for assessment of cyber security at power substations[J] IEEE Transactions on Smart Grid, 2018, 9(4):2541-2552.
|
[73] |
文超, 董文瀚, 解武杰, 等. 基于回访机制的无人机集群分布式协同区域搜索方法[J]. 航空学报, 2023, 44(11):327561.
|
|
WEN C, DONG W H, XIE W J, et al. Distributed cooperative area search method for UAV swarms based on revisit mechanism[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(11):327561. (in Chinese)
|
[74] |
高兵, 张哲婕, 邹启杰, 等. 基于深度强化学习和信息论的多智能体通信方法[J]. 航空学报, 2024, 45(11):329862.
|
|
GAO B, ZHANG Z J, ZOU Q J, et al. Multi-agent communication cooperation based on deep reinforcement learning and information theory[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(11):329862. (in Chinese)
|
[75] |
WANG Y J, WANG X K, SHEN L C. A novel collision avoidance method for multiple fixed-wing unmanned aerial vehicles[C]// Proceedings of 2019 Chinese Automation Congress.Hangzhou, China: IEEE,2019:3621-3626.
|
[76] |
韩煜, 宋韬, 郑多, 等. 基于冲突触发避碰机制的无人飞行器集群协同制导技术[J]. 兵工学报, 2023, 44(7):1881-1895.
|
|
HAN Y, SONG T, ZHENG D, et al Unmanned aerial vehicle cluster cooperative guidance technology based on conflict trigger mechanism[J]. Acta Armamentarii, 2023, 44(7):1881-1895. (in Chinese)
|
[77] |
王泳安, 李东光, 吴浩, 等. 一种自适应滤波与干扰观测器相结合的大型舰船状态估计算法[J]. 兵工学报, 2024, 45(7):2318-2328.
|
|
WANG Y A, LI D G, WU H, et al. An adaptive filtering combined with interference observer state estimation algorithm for large ships[J]. Acta Armamentarii, 2024, 45(7):2318-2328. (in Chinese)
|
[78] |
兰庆湘, 陈谋, 雍可南. 多旋翼无人机模型预测抗扰避障制导[J]. 国防科技大学学报, 2022, 44(4):32-42.
|
|
LAN Q X, CHEN M, YONG K N. Model predictive based disturbance rejection and obstacle avoidance guidance for multi-rotor unmanned aerial vehicle[J]. Journal of National University of Defense Technology, 2022, 44(4):32-42. (in Chinese)
|
[79] |
王祝, 徐广通, 龙腾. 基于定制内点法的多无人机协同轨迹规划[J]. 自动化学报, 2023, 49(11):2374-2385.
|
|
WANG Z, XU G T, LONG T. Customized interior-point method for cooperative trajectory planning of multiple unmanned aerial vehicles[J]. Acta Automatica Sinica, 2023, 49(11):2374-2385. (in Chinese)
|
[80] |
徐广通, 王祝, 曹严, 等. 动态优先级解耦的无人机集群轨迹分布式序列凸规划[J]. 航空学报, 2022, 43(2):325059.
|
|
XU G T, WANG Z, CAO Y, et al. Dynamic-priority-decoupled UAV swarm trajectory planning using distributed sequential convex programming[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(2):325059. (in Chinese)
|
[81] |
唐永兴, 朱战霞, 张红文, 等. 机器人运动规划方法综述[J]. 航空学报, 2023, 44(2):026495.
|
|
TANG Y X, ZHU Z X, ZHANG H W, et al. A tutorial and review on robot motion planning[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(2):026495. (in Chinese)
|
[82] |
李尔玉, 龚建兴, 黄健, 等. 基于功能链的作战体系复杂网络节点重要性评价方法[J]. 指挥与控制学报, 2018, 4(1):42-49.
|
|
LI E Y, GONG J X, HUANG J, et al. Node importance analysis of complex networks for combat systems based on function chain[J]. Journal of Command and Control, 2018, 4(1):42-49. (in Chinese)
|
[83] |
王运明, 崔怀健, 陈波, 等. 基于边连接策略的指控网络模型研究[J]. 指挥与控制学报, 2016, 2(1):40-46.
|
|
WANG Y M, CUI H J, CHEN B, et al. On model of command and control networks based on edge-link strategy[J]. Journal of Command and Control, 2016, 2(1):40-46. (in Chinese)
|
[84] |
张品, 董志远, 沈政. 用于评价通信网节点重要性的多参数优化算法[J]. 计算机工程, 2013, 39(6):95-98.
|
|
ZHANG P, DONG Z Y, SHEN Z. Multi-parameter optimization algorithm for communication network node importance evaluation[J]. Computer Engineering, 2013, 39(6):95-98. (in Chinese)
|
[85] |
周漩, 张凤鸣, 李克武, 等. 利用重要度评价矩阵确定复杂网络关键节点[J]. 物理学报, 2012, 61(5):1-7.
|
|
ZHOU X, ZHANG F M, LI K W, et al. Finding vital node by node importance evaluation matrix in complex networks[J]. Acta Physica Sinica, 2012, 61(5):1-7. (in Chinese)
|
[86] |
尹荣荣, 尹学良, 崔梦頔, 等. 基于重要度贡献的无标度网络节点评估方法[J]. 软件学报, 2019, 30(6):1875-1885.
|
|
YIN R R, YIN X L, CUI M D, et al. Node evaluation method based on importance contribution in scale-free networks[J]. Journal of Software, 2019, 30(6):1875-1885. (in Chinese)
|
[87] |
董广智, 由佳, 王战. 自适应网络结构断边重连方法设计与实现[J]. 计算机仿真, 2022, 39(8):427-431.
|
|
DONG G Z, YOU J, WANG Z. Design and implementation of broken edge reconnection method of adaptive network structure[J]. Computer Simulation, 2022, 39(8):427-431. (in Chinese)
|
[88] |
李佳威, 吴明功, 温祥西, 等. 基于最小连通支配集的复杂网络关键节点与连边识别方法[J]. 系统工程与电子技术, 2019, 41(11) 2541-2549.
|
|
LI J W, WU M G, WEN X X, et al. Identifying key nodes and edges of complex networks based on the minimum connected dominating set[J]. Systems Engineering and Electronics, 2019, 41(11):2541-2549. (in Chinese)
|
[89] |
YANG Z H, LI Y, YUAN P, et al. TCSC:a novel file distribution strategy in integrated LEO satellite-terrestrial networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(5):5426-5441.
|
[90] |
LI Y, WANG Y, ZHANG Q Y, et al. TCDS:a time-relevant graph based topology control in triplelayer satellite networks[J]. IEEE Wireless Communications Letters, 2020, 9(3):424-428.
|
[91] |
LI J W, WEN X X, WU M G, et al. Identification of key nodes and vital edges in aviation network based on minimum connected dominating set[J]. Physica A:Statistical Mechanics and Its Applications, 2020,541:123340.
|
[92] |
吴明功, 毕可心, 温祥西, 等. 基于飞行冲突网络最优支配集的冲突调配策略[J]. 北京航空航天大学学报, 2023, 49(2):242-253.
|
|
WU M G, BI K X, WEN X X, et al. Conflict resolution strategy based on optimal dominating set of flight conflict networks[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(2):242-253. (in Chinese)
|
[93] |
陈浩, 王祥科, 杨健. 面向集群一致性的抗毁性网络分析与设计[J]. 指挥与控制学报, 2022, 8(2):189-197.
|
|
CHEN H, WANG X K, YANG J. Analysis and design of survivable networks from the viewpoint of swarm consensus[J]. Journal of Command and Control, 2022, 8(2):189-197. (in Chinese)
|
[94] |
王强. 面向任务的多智能体系统抗毁性拓扑结构构建与群集控制[D]. 北京: 北京理工大学, 2015.
|
|
WANG Q. Task-oriented fault-tolerant topology and flocking control for multi-agent systems[D]. Beijing: Beijing Institute of Technology, 2015. (in Chinese)
|
[95] |
CAREGNATO-NETO A, MAXIMO M R O A, AFONSO R J M. A line-of-sight constraint based on intermediary points for connectivity maintenance of multiagent systems using mixed-integer programming[J]. European Journal of Control, 2022,68:100671.
|
[96] |
AFONSO R J M, GALVAO R K H, SOUZA G A, et al. Linear constraints for ensuring k-hop connectivity using mixed-integer programming for multi-agent systems[J]. International Journal of Robust and Nonlinear Control, 2024, 34(2):1433-1447.
|
[97] |
ZHANG S W, ZENG Y, ZHANG R. Cellular-enabled UAV communication:a connectivity-constrained trajectory optimization perspective[J]. IEEE Transactions on Communications, 2019, 67(3):2580-2604.
|
[98] |
YANG Z Q, ZHANG Q, CHEN Z Q. Adaptive distributed convex optimization for multi-agent and its application in flocking behavior[J]. Journal of the Franklin Institute, 2019, 356(2):1038-1050.
|
[99] |
汪镇涛, 李大鹏, 丁良辉, 等. 基于多重虚拟力控制的无人机覆盖编队分簇算法[J]. 指挥与控制学报, 2023, 9(2):204-214.
|
|
WANG Z T, LI D P, DING L H, et al Clustering algorithm of UAV coverage formation based on multiple virtual force control[J]. Journal of Command and Control, 2023, 9(2):204-214. (in Chinese)
|
[100] |
ZHU L B, MA C, LI J L, et al. Connectivity-maintenance UAV formation control in complex environment[J]. Drones, 2023, 7(4):229.
|
[101] |
CHEN J Y, ZHOU R, SUN G B, et al. Collision-free formation control with global network integrity maintenance via preserving induced-subgraph connectivity[J]. IEEE Systems Journal, 2023, 17(3):4078-4089.
|
[102] |
ZHANG D F, DUAN H B, ZENG Z G. Leader-follower interactive potential for target enclosing of perception-limited UAV groups[J]. IEEE Systems Journal, 2022, 16(1):856-867.
|
[103] |
LI X, ZHOU R, SUN G B, et al. Connectivity-preserving flocking of multiagent systems via selecting critical neighbors[J]. IEEE Transactions on Network Science and Engineering, 2023, 10(6):3779-3792.
|
[104] |
BIRCHFIELD A B, XU T, GEGNER K M, et al. Grid structural characteristics as validation criteria for synthetic networks[J]. IEEE Transactions on Power Systems, 2016, 32(4):3258-3265.
|
[105] |
潘子双, 苏析超, 韩维, 等. 基于动态一致性联盟算法的异构无人机集群协同作战联盟组建[J]. 兵工学报, 2024, 45(9):3177-3190.
|
|
PAN Z S, SU X C, HAN W, et al. Cooperative combat coalition formation with heterogeneous UAV swarm based on dynamic consensus-based grouping algorithm[J]. Acta Armamentarii, 2024, 45(9):3177-3190. (in Chinese)
|
[106] |
芦倩, 李晓娟, 关永, 等. 面向数据流的ROS2数据分发服务形式建模与分析[J]. 软件学报, 2021, 32(6):1818-1829.
|
|
LU Q, LI X J, GUAN Y, et al. Modeling and analysis of ROS2 data distribution service for data flow[J]. Journal of Software, 2021, 32(6):1818-1829. (in Chinese)
|
[107] |
ELKHIDER S M, EL-FERIK S, SAIF A W A. Denial of service attack of QoS-based control of multi-agent systems[J]. Applied Sciences-Basel, 2022, 12(9):4315.
|
[108] |
杜越洋, 赵盾, 闫智超. 基于数据分发服务的无人机任务载荷综合仿真平台研究[J]. 无人系统技术, 2021, 4(1):79-86.
|
|
DU Y Y, ZHAO D, YAN Z C. Research on DDS-based integrated simulation platform for UAV mission payload[J]. Unmanned Systems Technology, 2021, 4(1):79-86. (in Chinese)
|
[109] |
ELKHIDER S M, EL-FERIK S, SAIF A W A. Containment control of multiagent systems subject to denial-of-service attacks[J]. IEEE Access, 2022,10:48102-48111.
|
[110] |
赵国荣, 廖海涛, 韩旭, 等. 能量和带宽受限下的分布式一致性融合估计器[J]. 控制与决策, 2020, 35(1):16-24.
|
|
ZHAO G R, LIAO H T, HAN X, et al. Consensus-based distributed fusion estimator with energy and bandwidth constraints[J]. Control and Decision, 2020, 35(1):16-24. (in Chinese)
|
[111] |
叶丹, 靳凯净, 张天予. 网络攻击下的信息物理系统安全性研究综述[J]. 控制与决策, 2023, 38(8):2243-2252.
|
|
YE D, JIN K J, ZHANG T Y. A survey on security of cyber-physical systems under network attacks[J]. Control and Decision, 2023, 38(8):2243-2252. (in Chinese)
|
[112] |
唐帅文, 周志杰, 姜江, 等. 考虑扰动的无人机集群协同态势感知一致性评估[J]. 航空学报, 2020, 41(增刊2):724233.
|
|
TANG S W, ZHOU Z J, JIANG J, et al. Consensus evaluation of UAV swarm cooperative situation awareness considering perturbation[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2):724233. (in Chinese)
|
[113] |
潘献飞, 宁治文, 王茂松, 等. 基于因子图的导航定位技术应用分析与思考[J]. 控制理论与应用, 2023, 40(12):2130-2141.
|
|
PAN X F, NING Z W, WANG M S, et al. Analysis and reflection on the navigation and positioning application based on factor graph[J]. Control Theory & Applications, 2023, 40(12):2130-2141. (in Chinese)
|