[1] |
江碧涛, 温广辉, 周佳玲, 等. 智能无人集群系统跨域协同技术研究现状与展望[J]. 中国工程科学, 2024, 26(1):117-126.
doi: 10.15302/J-SSCAE-2024.01.015
|
|
JIANG B T, WEN G H, ZHOU J L, et al. Cross-domain cooperative technology of intelligent unmanned swarm systems:current status and prospects[J]. Strategic Study of CAE, 2024, 26(1):117-126. (in Chinese)
|
[2] |
|
|
|
[3] |
逯杰. 跨域联合,未来联合作战新趋势[N]. 解放军报, 2020-09-08(07)[2024-09-15].
|
|
LU J. Cross-domain alliance:New trend of future joint operations[N]. PLA Daily, 2020-09-08(07)[2024-09-15]. (in Chinese)
|
[4] |
DEMPSEY M E. Joint operational access concept[R]. Department of Defense, 2020.
|
[5] |
李龙跃, 贾忠慧, 皮雳, 等. 美军杀伤网的概念内涵、发展现状与趋势[J/OL]. 航空兵器, 2024 (2024-08-15)[2024-09-15]. http://kns.cnki.net/kcms/detail/41.1228.TJ.20240815.1604.004.html.
|
|
LI L Y, JIA Z H, PI L, et al. The concept connotation,development status and trend of US Army kill net[J/OL]. Aero Weapony, 2024 (2024-08-15)[2024-09-15]. http://kns.cnki.net/kcms/detail/41.1228.TJ.20240815.1604.004.html. (in Chinese)
|
[6] |
李磊, 王彤, 蒋琪. 从美军2042年无人系统路线图看无人系统关键技术发展动向[J]. 无人系统技术, 2018, 1(4):79-84.
|
|
LI L, WANG T, JIANG Q. Key technology develop trends of unmanned systems viewed from unmanned systems integrated roadmap 2017-2042[J]. Unmanned Systems Technology. 2018, 1(4):79-84. (in Chinese)
|
[7] |
何玉庆, 秦天一, 王楠. 跨域协同:无人系统技术发展和应用新趋势[J]. 无人系统技术, 2021, 4(4):13.
|
|
HE Y Q, QING T Y, WANG N. Cross-domain collaboration:new trends in the development and application of unmanned systems technology[J]. Unmanned Systems Technology, 2021, 4(4):13. (in Chinese)
|
[8] |
李姝, 裘昌利, 栾爽, 等. 美军无人系统发展规划研究综述[J]. 无人系统技术, 2023, 6(6):101-108.
|
|
LI S, QIU C L, LUAN S, et al. Review on unmanned systems integrated roadmap by DoD[J]. Unmanned Systems Technology, 2023, 6(6):101-108. (in Chinese)
|
[9] |
杨巍, 秦浩, 王佳, 等. 2021年世界军用无人系统领域发展综述[J]. 中国电子科学研究院学报, 2022, 17(4):368-373.
|
|
YANG W, QIN H, WANG J, et al. Summary of the development of world military unmanned systems in 2021[J]. Journal of CAEIT, 2022, 17(4):368-373. (in Chinese)
|
[10] |
张宝珍, 吴建龙. 美空军三位一体“试验旗”系列演习综述[J]. 计算机测量与控制, 2021, 29(12):1-7,12.
|
|
ZHANG B Z, WU J L. Summary of US air force trinity “Test Flag” series exercises[J]. Computer Measurement & Control, 2021, 29(12):1-7,12. (in Chinese)
|
[11] |
粟锋, 徐能武. 美国国防太空力量发展的动向及应对—基于对美国2020年《国防太空战略》的解读[J]. 国防科技, 2021, 42(3):91-97.
|
|
SU F, XU N W. Trends and responses to the development of the U.S.defense space force-based on the interpretation of the《U.S.Defense Space Strategy 2020》[J]. National Defense Technology, 2021, 42(3):91-97. (in Chinese)
|
[12] |
太阳谷. 美军联合全域作战探索路线浅析[J]. 军事文摘, 2020 (23):32-34.
|
|
TAI Y G. A brief analysis of the exploration route of the United States military joint all-area operations[J]. Military Digest, 2020 (23):32-34. (in Chinese)
|
[13] |
褚睿, 刘玮琦. “多域作战”的外军视角[N]. 解放军报, 2021-7-29(7)[2024-9-15].
|
|
CHU R, LIU W Q. Foreign military perspective of "Multi-Domain Operations"[N]. PLA Daily, 2021-7-29(7)[2024-9-15]. (in Chinese)
|
[14] |
European Defence Agency. Beyond 2040 - EDA analysis warns on future warfare trends and technology imperatives for European defence[EB/OL].(date-in-citation content-type="updated">2023-10-23)[2024-9-5]. https://defence-industry.eu/eda-enhancing-eu-military-capabilities-beyond-2040/.
|
[15] |
Strategic Command. Multi-domain integration:Demystified[EB/OL].(2021-10-11)[2024-9-5]. https://stratcommand.blog.gov.uk/2021/10/11/multi-domain-integration-demystified/.
|
[16] |
CHOUDHURY S, GUPTA J K, KOCHENDERFER M J, et al. Dynamic multi-robot task allocation under uncertainty and temporal constraints[J]. Autonomous Robots, 2022, 46(1):231-247.
|
[17] |
CHENG M, LIU H, WEN G H, et al. Data-driven time-varying formation-containment control for a heterogeneous air-ground vehicle team subject to active leaders and switching topologies[J]. Automatica, 2023, 153:111029.
|
[18] |
张鹏飞, 何印, 马振华, 等. 无人机集群协同控制技术综述[J]. 兵器装备工程学报, 2024, 45(4):1-9.
|
|
ZHANG P F, HE Y, MA Z H, et al. Review on cooperative control technology of UAV swarm[J]. Journal of Ordnance Equipment Engineering, 2024, 45(4):1-9. (in Chinese)
|
[19] |
贾永楠, 李擎. 多机器人编队控制研究进展[J]. 工程科学学报, 2018, 40(8):893-900.
|
|
JIA Y N, LI Q. Research development of multi-robot formation control[J]. Chinese Journal of Engineering, 2018, 40(8):893-900. (in Chinese)
|
[20] |
JIAO L, PENG Z, XI L, et al. Multi-agent coverage path planning via proximity interaction and cooperation[J]. IEEE Sensors Journal, 2022, 22(6):6196-6207.
|
[21] |
ROPERTZ T, BERNS K, LI X, et al. Verification of behavior-based control systems in their physical environment[C]// Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen.Freiburg, Germany: University of Freiburg, 2016:128-137.
|
[22] |
刘惟恒, 郑辛, 邓志红. 基于邻近行为观测方法的多无人机分布式自适应编队控制[J]. 中南大学学报, 2021, 3:784-795.
|
|
LIU W H, ZHENG X, DENG Z H. Adaptive distributed formation maintenance for multiple UAVs:Exploiting proximity behavior observations[J]. Journal of Central South University. 2021,28,784-795. (in Chinese)
|
[23] |
LEE G, CHWA D. Decentralized behavior-based formation control of multiple robots considering obstacle avoidance[J]. Intelligent Service Robotics, 2017, 11(6):1-12.
|
[24] |
DUAN H, XIN L, SHI Y. Homing pigeon-inspired autonomous navigation system for unmanned aerial vehicles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(4):2218-2224.
|
[25] |
FERIK E S. Biologically based control of a fleet of unmanned aerial vehicles facing multiple threats[J]. IEEE Access, 2020, 8:107146-107160.
|
[26] |
QUAMAR M M, FERIK E S. Cooperative prey hunting for multi agent system designed using bio-inspired adaptation technique[C]// Proceedings of the 2023 International Conference on Control,Automation and Diagnosis (ICCAD). Rome,Italy: IEEE, 2023:1-6.
|
[27] |
QUAMAR M M, FERIK E S. Control and coordination for swarm of UAVs under multi-predator attack[C]// Proceedings of the 2023 Systems and Information Engineering Design Symposium (SIEDS).Charlottesville,VA, 2023:96-101.
|
[28] |
LEWIS M A, TAN K H. High precision formation control of mobile robots using virtual structures[J]. Autonomous robots, 1997, 4:387-403.
|
[29] |
REN W, BEARD R. Decentralized scheme for spacecraft formation flying via the virtual structure approach[J]. Journal of Guidance Control & Dynamics, 2015, 27(1):1746-1751.
|
[30] |
REN W, SORENSEN N. Distributed coordination architecture for multi-robot formation control[J]. Robotics and Autonomous Systems, 2008, 56(4):324-333.
|
[31] |
DONG X W, LI Y F, LU C, et al. Time-varying formation tracking for UAV swarm systems with switching directed topologies[J]. IEEE transactions on neural networks and learning systems, 2018, 30(12):3674-3685.
|
[32] |
LIU G P, ZHANG S. A survey on formation control of small satellites[J]. Proceedings of the IEEE, 2018, 106(3):440-457.
|
[33] |
ZHOU D, WANG Z, SCHWAGER M. Agile coordination and assistive collision avoidance for quadrotor swarms using virtual structures[J]. IEEE Transactions on Robotics, 2018, 34(4):916-923.
|
[34] |
NGUYEN M T. Energy-efficient mobile sensing in distributed multi-agent sensor networks[J]. Advances in Science,Technology and Engineering Systems Journal, 2017, 2(3):245-253.
|
[35] |
LOW C B, SAN N Q. A flexible virtual structure formation keeping control for fixed-wing UAVs[C]// Proceedings of the 9th IEEE international conference on control and automation (ICCA).Santiago,Chile:IEEE, 2011:621-626.
|
[36] |
ASKARI A, MORTAZAVI M, TALEBI H A. UAV formation control via the virtual structure approach[J]. Journal of Aerospace Engineering, 2015, 28(1):04014047.
|
[37] |
GHAMRY K A, ZHANG Y. Formation control of multiple quadrotors based on leader-follower method[C]// Proceedings of the 2015 International Conference on Unmanned Aircraft Systems (ICUAS).Denver,CO,US:IEEE, 2015:1037-1042.
|
[38] |
ROLDAO V, CUNHA R, CABECINHAS D, et al. A leader-following trajectory generator with application to quadrotor formation flight[J]. Robotics and Autonomous Systems, 2014, 62(10):1597-1609.
|
[39] |
LIN J, MIAO Z, ZHONG H, et al. Adaptive image-based leader-follower formation control of mobile robots with visibility constraints[J]. IEEE Transactions on Industrial Electronics, 2020, 68(7):6010-6019.
|
[40] |
ZHANG J, YAN J, ZHANG P. Multi-UAV formation control based on a novel back-stepping approach[J]. IEEE Transactions on Vehicular Technology, 2020, 69(3):2437-2448.
|
[41] |
GALZI D, SHTESSEL Y. UAV formations control using high order sliding modes[C]// Proceedings of the 2006 American Control Conference.Minneapolis,MN,US:IEEE, 2006:6.
|
[42] |
KARTAL Y, SUBBARAO K, GANS N R, et al. Distributed backstepping based control of multiple UAV formation flight subject to time delays[J]. IET Control Theory & Applications, 2020, 14(12):1628-1638.
|
[43] |
WANG J, HAN L, DONG X, et al. Distributed sliding mode control for time-varying formation tracking of multi-UAV system with a dynamic leader[J]. Aerospace Science and Technology, 2021, 111:106549.
|
[44] |
WANG H, GUO D, LIANG X, et al. Adaptive vision-based leader-follower formation control of mobile robots[J]. IEEE Transactions on Industrial Electronics, 2017, 64(4):2893-2902.
|
[45] |
MOROZOVA N S. Formation control and obstacle avoidance for multi-agent systems with dynamic topology[C]// Proceedings of the 2015 International Conference"Stability and Control Processes" in Memory of VI Zubov (SCP).Petersburg,Russia:IEEE, 2015:580-583.
|
[46] |
OLFATI S R. Flocking for multi-agent dynamic systems:Algorithms and theory[J]. IEEE Transactions on automatic control, 2006, 51(3):401-420.
|
[47] |
NGUYEN M T, LA H M, TEAGUE K A. Collaborative and compressed mobile sensing for data collection in distributed robotic networks[J]. IEEE Transactions on Control of Network Systems, 2017, 5(4):1729-1740.
|
[48] |
NO T S, KIM Y, TAHK M J, et al. Cascade-type guidance law design for multiple-UAV formation keeping[J]. Aerospace Science and Technology, 2011, 15(6):431-439.
|
[49] |
ALONSO M J, MONTIJANO E, NAGELI T, et al. Distributed multi-robot formation control in dynamic environments[J]. Autonomous Robots, 2019, 43:1079-1100.
|
[50] |
ALONSO M J, MONTIJANO E, SCHWAGER M, et al. Distributed multi-robot formation control among obstacles:a geometric and optimization approach with consensus[C]// Proceedings of the 2016 IEEE international conference on robotics and automation (ICRA).Stockholm,Sweden:IEEE, 2016:5356-5363.
|
[51] |
卫恒, 吕强, 刘扬, 等. 基于状态切换的分布式多机器人编队控制[J]. 兵工学报, 2019, 40(5):1103-1112.
doi: 10.3969/j.issn.1000-1093.2019.05.024
|
|
WEI H, LÜ Q, LIU Y, et al. State switching-based distributed multi-robot formation control[J]. Acta Armamentarii, 2019, 40(5):1103-1112. (in Chinese)
doi: 10.3969/j.issn.1000-1093.2019.05.024
|
[52] |
PAN Z, ZHANG C, XIA Y, et al. An improved artificial potential field method for path planning and formation control of the multi-UAV systems[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2021, 69(3):1129-1133.
|
[53] |
YU Y, GUO J, AHN C K, et al. Neural adaptive distributed formation control of nonlinear multi-UAVs with unmodeled dynamics[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 34(11):9555-9561.
|
[54] |
SAIF A W A, ATAUR R M, ELFERIK S, et al. Multi-model fuzzy formation control of uav quadrotors[J]. Intelligent Automation and Soft Computing, 2021, 27(3):817-834.
|
[55] |
HOANG V T, PHUNG M D, DINH T H, et al. Reconfigurable multi-UAV formation using angle-encoded PSO[C]// Proceedings of the 15th International Conference on Automation Science and Engineering (CASE).Vancouver,BC,Canada:IEEE, 2019:1670-1675.
|
[56] |
DAI S L, LU K, JIN X. Fixed-time formation control of unicycle-type mobile robots with visibility and performance constraints[J]. IEEE Transactions on Industrial Electronics, 2020, 68(12):12615-12625.
|
[57] |
LIY M, D S J, L K W, et al. Fuzzy adaptive fault tolerant time-varying formation control for nonholonomic multirobot systems with range constraints[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(6):3668-3679.
|
[58] |
ZHOU H D, SUI S C, TONG S. Finite-time adaptive fuzzy prescribed performance formation control for high-order nonlinear multiagent systems based on event-triggered mechanism[J]. IEEE Transactions on Fuzzy Systems, 2022, 31(4):1229-1239.
|
[59] |
TONG S, LI K, LI Y. Robust fuzzy adaptive finite-time control for high-order nonlinear systems with unmodeled dynamics[J]. IEEE Transactions on Fuzzy Systems, 2020, 29(6):1576-1589.
|
[60] |
梁鸿涛, 王耀南, 华和安, 等. 无人集群系统深度强化学习控制研究进展[J]. 工程科学学报, 2024, 46(9):1521-1534.
|
|
LIANG H T, WANG Y N, HUA H A, et al. Deep reinforcement learning to control an unmanned swarm system[J]. Chinese Journal of Engineering, 2024, 46(9):1521-1534. (in Chinese)
|
[61] |
XU D, CHEN G. Autonomous and cooperative control of UAV cluster with multi-agent reinforcement learning[J]. The Aeronautical Journal, 2022, 126(1300):932-951.
|