Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (9): 2936-2950.doi: 10.12382/bgxb.2023.0797
Previous Articles Next Articles
XIA Huanxiong1,2, LI Kang1, GAO Feng1, LIU Jianhua1,2, AO Xiaohui1,2,*()
Received:
2023-08-25
Online:
2023-11-18
Contact:
AO Xiaohui
CLC Number:
XIA Huanxiong, LI Kang, GAO Feng, LIU Jianhua, AO Xiaohui. Intelligent Optimization for Forming Quality of Melt-cast Explosives Based on the Evolution Characteristics of Solidification Front[J]. Acta Armamentarii, 2024, 45(9): 2936-2950.
Add to citation manager EndNote|Ris|BibTeX
材料 | 温度 | 导热系数λ/ (W·m-1K-1) | 密度ρ/ (kg·m-3) | 比热容cp/ (J·kg-1K-1) | 固相线 温度 Tsol/℃ | 液相线 温度 Tliq/℃ | 与外界的换热系数 h1/(W·m-2·K-1) | 与炸药的换热系数 h2/(W·m-2·K-1) | 环境 温度/℃ |
---|---|---|---|---|---|---|---|---|---|
DNAN | 20℃ | 0.72 | 1858 | 1130 | |||||
基炸药 | 65℃ | 0.70 | 1810 | 1320 | 85 | 90 | 20 | ||
110℃ | 0.64 | 1700 | 1450 | 25 | |||||
钢 | 50 | 7940 | 450 | 300 | 200 | ||||
铝合金 | 176 | 2700 | 900 | 200 | 100 |
Table 1 Material properties of DNAN-based explosives, steel and aluminium alloy[24]
材料 | 温度 | 导热系数λ/ (W·m-1K-1) | 密度ρ/ (kg·m-3) | 比热容cp/ (J·kg-1K-1) | 固相线 温度 Tsol/℃ | 液相线 温度 Tliq/℃ | 与外界的换热系数 h1/(W·m-2·K-1) | 与炸药的换热系数 h2/(W·m-2·K-1) | 环境 温度/℃ |
---|---|---|---|---|---|---|---|---|---|
DNAN | 20℃ | 0.72 | 1858 | 1130 | |||||
基炸药 | 65℃ | 0.70 | 1810 | 1320 | 85 | 90 | 20 | ||
110℃ | 0.64 | 1700 | 1450 | 25 | |||||
钢 | 50 | 7940 | 450 | 300 | 200 | ||||
铝合金 | 176 | 2700 | 900 | 200 | 100 |
仿真 实验 | 炸药浇注 温度/℃ | 水浴初始 温度/℃ | 水浴保温 时间/h | 水浴降温速率/ (℃·min-1) | 油浴初始 温度/℃ | 油浴保温 时间/h | 油浴降温速率/ (℃·min-1) |
---|---|---|---|---|---|---|---|
A | 90 | 90 | 0.5 | 0.2 | 100 | 4 | 0.6 |
B | 95 | 95 | 0 | 0.25 | 90 | 5 | 0.4 |
Table 2 Parameters of simulation experiments
仿真 实验 | 炸药浇注 温度/℃ | 水浴初始 温度/℃ | 水浴保温 时间/h | 水浴降温速率/ (℃·min-1) | 油浴初始 温度/℃ | 油浴保温 时间/h | 油浴降温速率/ (℃·min-1) |
---|---|---|---|---|---|---|---|
A | 90 | 90 | 0.5 | 0.2 | 100 | 4 | 0.6 |
B | 95 | 95 | 0 | 0.25 | 90 | 5 | 0.4 |
仿真 实验组 | 炸药浇注 温度/℃ | 水浴初始 温度/℃ | 水浴保温 时间/h | 水浴降温速率/ (℃·min-1) | 油浴初始 温度/℃ | 油浴保温 时间/h | 油浴降温速率/ (℃·min-1) |
---|---|---|---|---|---|---|---|
1 | 90 | 90 | 0.50 | 0.15 | 95 | 6 | 0.4 |
2 | 90 | 90 | 0.50 | 0.20 | 100 | 4 | 0.6 |
3 | 90 | 95 | 0.25 | 0.15 | 100 | 5 | 0.4 |
4 | 95 | 85 | 0.50 | 0.15 | 100 | 5 | 0.6 |
5 | 95 | 85 | 0.50 | 0.20 | 90 | 6 | 0.5 |
6 | 95 | 85 | 0.50 | 0.25 | 95 | 4 | 0.4 |
7 | 95 | 90 | 0.25 | 0.15 | 90 | 4 | 0.6 |
8 | 95 | 90 | 0.25 | 0.20 | 95 | 5 | 0.5 |
9 | 95 | 90 | 0.25 | 0.25 | 100 | 4.5 | 0.6 |
10 | 95 | 95 | 0 | 0.15 | 95 | 6 | 0.6 |
11 | 95 | 95 | 0 | 0.20 | 100 | 4 | 0.5 |
12 | 95 | 90 | 0.25 | 0.35 | 90 | 4 | 0.4 |
13 | 100 | 85 | 0.25 | 0.15 | 95 | 6 | 0.5 |
14 | 100 | 85 | 0.25 | 0.20 | 100 | 4 | 0.4 |
15 | 100 | 85 | 0.25 | 0.25 | 90 | 5 | 0.6 |
16 | 100 | 90 | 0 | 0.15 | 100 | 5 | 0.5 |
17 | 100 | 85 | 0.50 | 0.25 | 90 | 4 | 0.4 |
18 | 100 | 90 | 0 | 0.25 | 95 | 4 | 0.6 |
19 | 100 | 95 | 0.50 | 0.15 | 90 | 4 | 0.5 |
20 | 100 | 95 | 0.50 | 0.20 | 95 | 5 | 0.4 |
21 | 100 | 95 | 0.50 | 0.25 | 100 | 6 | 0.6 |
Table 3 Process parameters for numerical simulation
仿真 实验组 | 炸药浇注 温度/℃ | 水浴初始 温度/℃ | 水浴保温 时间/h | 水浴降温速率/ (℃·min-1) | 油浴初始 温度/℃ | 油浴保温 时间/h | 油浴降温速率/ (℃·min-1) |
---|---|---|---|---|---|---|---|
1 | 90 | 90 | 0.50 | 0.15 | 95 | 6 | 0.4 |
2 | 90 | 90 | 0.50 | 0.20 | 100 | 4 | 0.6 |
3 | 90 | 95 | 0.25 | 0.15 | 100 | 5 | 0.4 |
4 | 95 | 85 | 0.50 | 0.15 | 100 | 5 | 0.6 |
5 | 95 | 85 | 0.50 | 0.20 | 90 | 6 | 0.5 |
6 | 95 | 85 | 0.50 | 0.25 | 95 | 4 | 0.4 |
7 | 95 | 90 | 0.25 | 0.15 | 90 | 4 | 0.6 |
8 | 95 | 90 | 0.25 | 0.20 | 95 | 5 | 0.5 |
9 | 95 | 90 | 0.25 | 0.25 | 100 | 4.5 | 0.6 |
10 | 95 | 95 | 0 | 0.15 | 95 | 6 | 0.6 |
11 | 95 | 95 | 0 | 0.20 | 100 | 4 | 0.5 |
12 | 95 | 90 | 0.25 | 0.35 | 90 | 4 | 0.4 |
13 | 100 | 85 | 0.25 | 0.15 | 95 | 6 | 0.5 |
14 | 100 | 85 | 0.25 | 0.20 | 100 | 4 | 0.4 |
15 | 100 | 85 | 0.25 | 0.25 | 90 | 5 | 0.6 |
16 | 100 | 90 | 0 | 0.15 | 100 | 5 | 0.5 |
17 | 100 | 85 | 0.50 | 0.25 | 90 | 4 | 0.4 |
18 | 100 | 90 | 0 | 0.25 | 95 | 4 | 0.6 |
19 | 100 | 95 | 0.50 | 0.15 | 90 | 4 | 0.5 |
20 | 100 | 95 | 0.50 | 0.20 | 95 | 5 | 0.4 |
21 | 100 | 95 | 0.50 | 0.25 | 100 | 6 | 0.6 |
仿真 实验组 | 度量指标 σmin | 最大孔隙率 Pmax/% | 缩孔缩松体积 Vs/mm3 | 仿真 实验组 | 度量指标 σmin | 最大孔隙率 Pmax/% | 缩孔缩松体积 Vs/mm3 | |
---|---|---|---|---|---|---|---|---|
1 | 16.53991 | 3.29 | 9.863 | 12 | 11.98614 | 4.98 | 20.372 | |
2 | 17.10425 | 2.67 | 7.919 | 13 | 15.83645 | 3.55 | 11.825 | |
3 | 17.93704 | 2.31 | 7.125 | 14 | 16.56021 | 3.25 | 10.885 | |
4 | 18.01297 | 2.81 | 8.863 | 15 | 11.76438 | 4.71 | 19.832 | |
5 | 12.96612 | 4.15 | 17.275 | 16 | 17.64397 | 2.61 | 8.790 | |
6 | 14.95398 | 4.18 | 13.338 | 17 | 12.43408 | 4.15 | 19.126 | |
7 | 13.56158 | 4.27 | 18.709 | 18 | 14.35084 | 4.02 | 13.777 | |
8 | 15.40288 | 3.77 | 12.048 | 19 | 13.52198 | 4.14 | 19.271 | |
9 | 16.21673 | 3.3 | 10.507 | 20 | 15.30599 | 3.81 | 12.528 | |
10 | 16.34581 | 3.32 | 10.767 | 21 | 16.15484 | 3.08 | 10.280 | |
11 | 16.87580 | 2.97 | 9.293 |
Table 4 Measure indicator and parameters of charge quality
仿真 实验组 | 度量指标 σmin | 最大孔隙率 Pmax/% | 缩孔缩松体积 Vs/mm3 | 仿真 实验组 | 度量指标 σmin | 最大孔隙率 Pmax/% | 缩孔缩松体积 Vs/mm3 | |
---|---|---|---|---|---|---|---|---|
1 | 16.53991 | 3.29 | 9.863 | 12 | 11.98614 | 4.98 | 20.372 | |
2 | 17.10425 | 2.67 | 7.919 | 13 | 15.83645 | 3.55 | 11.825 | |
3 | 17.93704 | 2.31 | 7.125 | 14 | 16.56021 | 3.25 | 10.885 | |
4 | 18.01297 | 2.81 | 8.863 | 15 | 11.76438 | 4.71 | 19.832 | |
5 | 12.96612 | 4.15 | 17.275 | 16 | 17.64397 | 2.61 | 8.790 | |
6 | 14.95398 | 4.18 | 13.338 | 17 | 12.43408 | 4.15 | 19.126 | |
7 | 13.56158 | 4.27 | 18.709 | 18 | 14.35084 | 4.02 | 13.777 | |
8 | 15.40288 | 3.77 | 12.048 | 19 | 13.52198 | 4.14 | 19.271 | |
9 | 16.21673 | 3.3 | 10.507 | 20 | 15.30599 | 3.81 | 12.528 | |
10 | 16.34581 | 3.32 | 10.767 | 21 | 16.15484 | 3.08 | 10.280 | |
11 | 16.87580 | 2.97 | 9.293 |
仿真 实验组 | 炸药浇注 温度/℃ | 水浴初始 温度/℃ | 水浴保温 时间/h | 水浴降温速率/ (℃·min-1) | 油浴初始 温度/℃ | 油浴保温 时间/h | 油浴降温速率/ (℃·min-1) |
---|---|---|---|---|---|---|---|
1 | 90 | 85 | 0 | 0.15 | 90 | 4 | 0.4 |
2 | 90 | 85 | 0 | 0.2 | 95 | 5 | 0.6 |
3 | 90 | 85 | 0 | 0.25 | 100 | 6 | 0.5 |
4 | 90 | 90 | 0.50 | 0.15 | 95 | 6 | 0.4 |
5 | 90 | 90 | 0.50 | 0.2 | 100 | 4 | 0.6 |
6 | 90 | 90 | 0.50 | 0.25 | 90 | 5 | 0.5 |
7 | 90 | 95 | 0.25 | 0.15 | 100 | 5 | 0.4 |
8 | 90 | 95 | 0.25 | 0.2 | 90 | 6 | 0.6 |
9 | 90 | 95 | 0.25 | 0.25 | 95 | 4 | 0.5 |
10 | 95 | 85 | 0.50 | 0.15 | 100 | 5 | 0.6 |
11 | 95 | 85 | 0.50 | 0.2 | 90 | 6 | 0.5 |
12 | 95 | 85 | 0.50 | 0.25 | 95 | 4 | 0.4 |
13 | 95 | 90 | 0.25 | 0.15 | 90 | 4 | 0.6 |
14 | 95 | 90 | 0.25 | 0.2 | 95 | 5 | 0.5 |
15 | 95 | 90 | 0.25 | 0.25 | 100 | 6 | 0.4 |
16 | 95 | 95 | 0 | 0.15 | 95 | 6 | 0.6 |
17 | 95 | 95 | 0 | 0.2 | 100 | 4 | 0.5 |
18 | 95 | 95 | 0 | 0.25 | 90 | 5 | 0.4 |
19 | 100 | 85 | 0.25 | 0.15 | 95 | 6 | 0.5 |
20 | 100 | 85 | 0.25 | 0.2 | 100 | 4 | 0.4 |
21 | 100 | 85 | 0.25 | 0.25 | 90 | 5 | 0.6 |
22 | 100 | 90 | 0 | 0.15 | 100 | 5 | 0.5 |
23 | 100 | 90 | 0 | 0.2 | 90 | 6 | 0.4 |
24 | 100 | 90 | 0 | 0.25 | 95 | 4 | 0.6 |
25 | 100 | 95 | 0.50 | 0.15 | 90 | 4 | 0.5 |
26 | 100 | 95 | 0.50 | 0.2 | 95 | 5 | 0.4 |
27 | 100 | 95 | 0.50 | 0.25 | 100 | 6 | 0.6 |
28 | 92.5 | 92.5 | 0.25 | 0.175 | 97.5 | 5 | 0.45 |
29 | 95.0 | 87.5 | 0.375 | 0.2 | 92.5 | 5.5 | 0.5 |
30 | 97.5 | 90 | 0.225 | 0.225 | 95 | 4.5 | 0.55 |
Table 5 Process parameters for orthogonal experiment
仿真 实验组 | 炸药浇注 温度/℃ | 水浴初始 温度/℃ | 水浴保温 时间/h | 水浴降温速率/ (℃·min-1) | 油浴初始 温度/℃ | 油浴保温 时间/h | 油浴降温速率/ (℃·min-1) |
---|---|---|---|---|---|---|---|
1 | 90 | 85 | 0 | 0.15 | 90 | 4 | 0.4 |
2 | 90 | 85 | 0 | 0.2 | 95 | 5 | 0.6 |
3 | 90 | 85 | 0 | 0.25 | 100 | 6 | 0.5 |
4 | 90 | 90 | 0.50 | 0.15 | 95 | 6 | 0.4 |
5 | 90 | 90 | 0.50 | 0.2 | 100 | 4 | 0.6 |
6 | 90 | 90 | 0.50 | 0.25 | 90 | 5 | 0.5 |
7 | 90 | 95 | 0.25 | 0.15 | 100 | 5 | 0.4 |
8 | 90 | 95 | 0.25 | 0.2 | 90 | 6 | 0.6 |
9 | 90 | 95 | 0.25 | 0.25 | 95 | 4 | 0.5 |
10 | 95 | 85 | 0.50 | 0.15 | 100 | 5 | 0.6 |
11 | 95 | 85 | 0.50 | 0.2 | 90 | 6 | 0.5 |
12 | 95 | 85 | 0.50 | 0.25 | 95 | 4 | 0.4 |
13 | 95 | 90 | 0.25 | 0.15 | 90 | 4 | 0.6 |
14 | 95 | 90 | 0.25 | 0.2 | 95 | 5 | 0.5 |
15 | 95 | 90 | 0.25 | 0.25 | 100 | 6 | 0.4 |
16 | 95 | 95 | 0 | 0.15 | 95 | 6 | 0.6 |
17 | 95 | 95 | 0 | 0.2 | 100 | 4 | 0.5 |
18 | 95 | 95 | 0 | 0.25 | 90 | 5 | 0.4 |
19 | 100 | 85 | 0.25 | 0.15 | 95 | 6 | 0.5 |
20 | 100 | 85 | 0.25 | 0.2 | 100 | 4 | 0.4 |
21 | 100 | 85 | 0.25 | 0.25 | 90 | 5 | 0.6 |
22 | 100 | 90 | 0 | 0.15 | 100 | 5 | 0.5 |
23 | 100 | 90 | 0 | 0.2 | 90 | 6 | 0.4 |
24 | 100 | 90 | 0 | 0.25 | 95 | 4 | 0.6 |
25 | 100 | 95 | 0.50 | 0.15 | 90 | 4 | 0.5 |
26 | 100 | 95 | 0.50 | 0.2 | 95 | 5 | 0.4 |
27 | 100 | 95 | 0.50 | 0.25 | 100 | 6 | 0.6 |
28 | 92.5 | 92.5 | 0.25 | 0.175 | 97.5 | 5 | 0.45 |
29 | 95.0 | 87.5 | 0.375 | 0.2 | 92.5 | 5.5 | 0.5 |
30 | 97.5 | 90 | 0.225 | 0.225 | 95 | 4.5 | 0.55 |
[1] |
田勇. 炸药熔铸成型过程监测评价及数值模拟研究[D]. 北京: 中国科学院研究生院(工程热物理研究所), 2009.
|
|
|
[2] |
胡菲. 熔铸炸药固化参数全时域测试及内部缺陷成因[D]. 太原: 中北大学, 2022.
|
|
|
[3] |
李全俊, 杨治林, 岳显, 等. 战斗部熔铸装药精密成型工艺参数优化方法[J]. 兵器装备工程学报, 2023, 44(5): 125-132.
|
|
|
[4] |
王林剑. 高固含量熔铸炸药凝固成型过程温度场与应变动态测试[D]. 太原: 中北大学, 2023.
|
|
|
[5] |
胡菲, 刘玉存, 袁俊明, 等. 炸药熔铸装药成型质量监测技术研究进展[J]. 兵器装备工程学报, 2021, 42(9): 1-6.
|
|
|
[6] |
蒙君煚, 张向荣, 周霖. DNAN基熔铸炸药成型过程数值仿真[J]. 兵工学报, 2013, 34(7): 810-814.
doi: 10. 3969/ j. issn. 1000-1093. 2013. 07. 002 |
|
|
[7] |
张明明, 张斌宏, 万大奎, 等. 熔铸装药凝固过程温度场变化分析[J]. 兵工自动化, 2021, 40(6): 93-96.
|
|
|
[8] |
焦云多, 曾晓华, 陈洋, 等. 大当量DNAN基熔铸炸药装药质量控制方法[J]. 兵工自动化, 2019, 38(8): 23-26.
|
|
|
[9] |
戚家文. 熔铸装药凝固工艺数值模拟研究[D]. 太原: 中北大学, 2022.
|
|
|
[10] |
|
[11] |
|
[12] |
郭朋林, 罗观, 习彦, 等. TNT基熔铸炸药冷却过程温度场变化规律研究[J]. 含能材料, 2010, 18(1): 93-96.
|
|
|
[13] |
李敬明, 田勇, 张伟斌, 等. 炸药熔铸过程缩孔和缩松的形成与预测[J]. 火炸药学报, 2011, 34(2): 17-20,55.
|
|
|
[14] |
马松, 袁俊明, 刘玉存, 等. DNAN炸药凝固过程的实验与数值模拟[J]. 含能材料, 2014, 22(2): 240-244.
|
|
|
[15] |
|
[16] |
刘瑞鹏, 罗一鸣, 王红星, 等. TNT、DNAN和DNTF单质凝固过程中温度和缩松的数值模拟及实验研究[J]. 火炸药学报, 2016, 39(3): 43-47,52.
doi: 10.14077/j.issn.1007-7812.2016.03.008 |
|
|
[17] |
高丰, 黄求安, 王冠一. 熔注炸药低比压顺序凝固界面生长规律研究[J]. 兵器装备工程学报, 2020, 41(8): 126-130.
|
|
|
[18] |
刘威. 凝固工艺对熔铸药柱质量的影响研究[D]. 太原: 中北大学, 2016.
|
|
|
[19] |
|
[20] |
蒙君煚, 周霖, 金大勇, 等. 成型工艺对2, 4-二硝基苯甲醚基熔铸炸药装药质量的影响[J]. 兵工学报, 2018, 39(9):1719-1726.
doi: 10.3969/j.issn.1000-1093.2018.09.007 |
|
|
[21] |
岳晓媛, 张会锁, 韩雪莲, 等. 大长径比熔铸装药热芯棒凝固工艺优化仿真[J]. 高压物理学报, 2021, 35(1):1-8.
|
|
|
[22] |
岳晓媛. 基于数值仿真的熔铸装药固化技术研究[D]. 太原: 中北大学, 2021.
|
|
|
[23] |
张建明, 廖敦明, 孙飞. 基于全连接卷积神经网络的铸造缩松缩孔缺陷快速预测[J]. 特种铸造及有色合金, 2020, 40(8): 841-845.
doi: 10.15980/j.tzzz.2020.08.007 |
|
|
[24] |
陶磊, 刘检华, 夏焕雄, 等. 基于B样条神经网络的熔铸装药温度场预测[J]. 兵工学报, 2023, 44(5): 1339-1349.
|
doi: 10.12382/bgxb.2022.0086 |
|
[25] |
|
[26] |
|
[27] |
牛凯博, 曹红松, 刘恒著, 等. 顺序凝固工艺参数对熔铸装药影响的模拟研究[J]. 含能材料, 2023, 31(4): 365-373.
|
|
|
[28] |
刘雨荻, 曹红松, 刘胜, 等. TNT熔铸炸药内部结晶组织的数值模拟[J]. 含能材料, 2019, 27(5):363-370.
|
|
|
[29] |
陶磊, 夏焕雄, 刘检华, 等. 高能材料熔铸成型工艺的建模仿真与优化[C]//第十六届中国CAE工程分析技术年会论文集. 北京: 中国数字仿真联盟, 2020:19-23.
|
|
|
[30] |
罗一鸣, 蒋秋黎, 赵凯, 等. 2,4-二硝基苯甲醚与TNT凝固行为的差异性分析[J]. 火炸药学报, 2015, 38(5):37-40.
doi: 10.14077/j.issn.1007-7812.2015.05.007 |
|
[1] | XU Yueyue, ZHANG Xiangrong, GAO Jiale, LIU Zhanwei, MIAO Feichao, LIU Pan, ZHOU Lin. Mechanical Properties and Failure Criteria of DNP-based Melt-cast Explosives [J]. Acta Armamentarii, 2024, 45(9): 3114-3124. |
[2] | SU Sheng, GU Sen, SONG Zhiqiang, LIU Ping. Military Cockpit Color Design Method Based on Deep Representation Learning and Genetic Algorithm [J]. Acta Armamentarii, 2024, 45(4): 1060-1069. |
[3] | MA Weining, HU Qiwei, CHEN Jing, JIA Xisheng. Joint Optimization of Selective Maintenance Decision and Mission Assignment for Equipment Groups [J]. Acta Armamentarii, 2024, 45(2): 407-416. |
[4] | QIN Guohua, LOU Weida, LIN Feng, XU Yong. A Novel Method of Stability Judgment and Milling Parameter Optimization Based on Cotes Integration Method and Neural Network [J]. Acta Armamentarii, 2024, 45(2): 516-526. |
[5] | LIU Zichang, LI Siyu, PEI Mochao, LIU Jie, MENG Shuo, WU Weiyi. Fault Diagnosis Method for Diesel Engine Based on Texture Analysis [J]. Acta Armamentarii, 2024, 45(2): 684-694. |
[6] | YE Wenyu, WANG Chunyang, YU Jinyang, TUO Mingkan, WANG Zishuo. Multi-beam Scanning of Liquid Crystal Optical Phased Array Based on Greedy Algorithm [J]. Acta Armamentarii, 2023, 44(9): 2650-2660. |
[7] | CHEN Song, ZHU Dongsheng, ZUO Qinwen, HAN Chaoshuai. GA-PS Based Three-dimensional Space Source Inversion Algorithm [J]. Acta Armamentarii, 2023, 44(8): 2503-2520. |
[8] | ZHANG An, XU Shuangfei, BI Wenhao, XU Han. Weapon-target Assignment and Guidance Sequence Optimization in Air-to-Ground Multi-target Attack [J]. Acta Armamentarii, 2023, 44(8): 2233-2244. |
[9] | LIU Yan, WANG Baichuan, YAN Junbo, YAN Zichen, SHI Zhenqing, HUANG Fenglei. Dynamic Response of Honeycomb Sandwich Plate with Negative Poisson’s Ratio under Penetration [J]. Acta Armamentarii, 2023, 44(7): 1938-1953. |
[10] | DU Weiwei, CHEN Xiaowei. Task Assignment and Optimization Method of Tactical-Level Army Operations [J]. Acta Armamentarii, 2023, 44(5): 1431-1442. |
[11] | TAO Lei, LIU Jianhua, XIA Huanxiong, AO Xiaohui, GAO Feng. Temperature Field Prediction of Melt-cast Explosives Based on a B-spline Neural Network [J]. Acta Armamentarii, 2023, 44(5): 1339-1349. |
[12] | CHEN Liang, LIU Rong-zhong, GUO Rui, ZHAO Bo-bo, LIU Lei, YANG Yong-liang. Multi-objective Optimization on Aerodynamic Shape of Projectile with Twisted Empennages [J]. Acta Armamentarii, 2016, 37(7): 1187-1193. |
[13] | WANG Qin-long, WANG Hong-yan, RUI Qiang. Research on Parameter Updating of High Mobility Tracked Vehicle Dynamic Model Based on Multi-objectiveGenetic Algorithm [J]. Acta Armamentarii, 2016, 37(6): 969-978. |
[14] | JIN Bi-xuan, ZHAI Yong, GU Hong-tao, ZHANG Tao. Optimized Methodfor Shift Valve Used in Integrated Transmission [J]. Acta Armamentarii, 2016, 37(4): 591-597. |
[15] | ZHAO Jian-zhong, OUYANG Zhong-hui, ZHANG Lei,ZHAO Jian-yin. Combined Prediction on Avionics State Optimized by MAGA [J]. Acta Armamentarii, 2016, 37(4): 727-734. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||