Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (8): 2761-2773.doi: 10.12382/bgxb.2023.0611
Previous Articles Next Articles
WANG Dongzhen1,*(), ZHANG Yue1, ZHAO Yu1, HUANG Daqing2
Received:
2023-06-26
Online:
2024-01-19
Contact:
WANG Dongzhen
CLC Number:
WANG Dongzhen, ZHANG Yue, ZHAO Yu, HUANG Daqing. A UAV Trajectory Optimization Method Based on RRT-Dubins[J]. Acta Armamentarii, 2024, 45(8): 2761-2773.
Add to citation manager EndNote|Ris|BibTeX
障碍物类型 | 编号 | 圆心坐标 | 半径 |
---|---|---|---|
风暴 | 1 | (744,634) | 77 |
2 | (807,909) | 73 | |
高炮 | 1 | (129,223) | 76 |
2 | (464,877) | 75 | |
雷达 | 1 | (332,267) | 75 |
1 | (240,711) | 75 | |
2 | (715,298) | 70 | |
山丘 | 3 | (460,512) | 74 |
4 | (840,140) | 78 | |
5 | (471,102) | 75 |
Table 1 Task space model parameters
障碍物类型 | 编号 | 圆心坐标 | 半径 |
---|---|---|---|
风暴 | 1 | (744,634) | 77 |
2 | (807,909) | 73 | |
高炮 | 1 | (129,223) | 76 |
2 | (464,877) | 75 | |
雷达 | 1 | (332,267) | 75 |
1 | (240,711) | 75 | |
2 | (715,298) | 70 | |
山丘 | 3 | (460,512) | 74 |
4 | (840,140) | 78 | |
5 | (471,102) | 75 |
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
Ng | 50 | c1、c2 | 2 |
κ | 100 | ω | 0.8 |
Table 2 Initial parameters of PSO algorithm
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
Ng | 50 | c1、c2 | 2 |
κ | 100 | ω | 0.8 |
起始位姿 | 目标位姿 | 障碍物 数量 | dmin | ||
---|---|---|---|---|---|
15 | 10 | 5 | |||
(50,50, 0.52π rad) | (950,500, 1.7π rad) | 5 | 1042 | 1026 | 1007 |
(50,50, 1.75π rad) | (600,900, 0.3π rad) | 5 | 1125 | 1123 | 1006 |
(100,50, 0.23π rad) | (900,900, 1.6π rad) | 10 | 1164 | 1107 | 1059 |
(50,50, 0.3π rad) | (950,50, 0.5π rad) | 10 | 1359 | 1352 | 1348 |
(200,20, 1.75π rad) | (950,50, 0.25π rad) | 15 | 1767 | 1752 | 1722 |
(20,500, 1.5π rad) | (980,500, 1.33π rad) | 15 | 1015 | 1011 | 1009 |
Table 3 Comparison of trajectory lengths at different safety distances
起始位姿 | 目标位姿 | 障碍物 数量 | dmin | ||
---|---|---|---|---|---|
15 | 10 | 5 | |||
(50,50, 0.52π rad) | (950,500, 1.7π rad) | 5 | 1042 | 1026 | 1007 |
(50,50, 1.75π rad) | (600,900, 0.3π rad) | 5 | 1125 | 1123 | 1006 |
(100,50, 0.23π rad) | (900,900, 1.6π rad) | 10 | 1164 | 1107 | 1059 |
(50,50, 0.3π rad) | (950,50, 0.5π rad) | 10 | 1359 | 1352 | 1348 |
(200,20, 1.75π rad) | (950,50, 0.25π rad) | 15 | 1767 | 1752 | 1722 |
(20,500, 1.5π rad) | (980,500, 1.33π rad) | 15 | 1015 | 1011 | 1009 |
起始位姿 | 目标位姿 | 障碍物 数量 | 航迹长度 | ||
---|---|---|---|---|---|
Dubins 曲线 方法 | B样条 曲线 方法 | 文献[21] 方法 | |||
(50,50, 0.34π rad) | (950,950, 2π rad) | 5 | 1234 | 1388 | 1403 |
50,50, 1.75π rad) | (500,950, 0.3π rad) | 5 | 967 | 1066 | 1102 |
(50,50, 0.67π rad) | (950,950, 0.25π rad) | 10 | 1355 | 1497 | 1509 |
(50,50, 0.7π rad) | (950,700, 1.5π rad) | 10 | 1244 | 1403 | 1438 |
(500,20, 2π rad) | (950,950, 0.25π rad) | 15 | 1046 | 1203 | 1235 |
(50,50, 2π rad) | (950,950, 0.8π rad) | 15 | 1375 | 1524 | 1566 |
Table 5 Comparison of the trajectory lengths obtained by 3 smoothing methods in 10 simulations
起始位姿 | 目标位姿 | 障碍物 数量 | 航迹长度 | ||
---|---|---|---|---|---|
Dubins 曲线 方法 | B样条 曲线 方法 | 文献[21] 方法 | |||
(50,50, 0.34π rad) | (950,950, 2π rad) | 5 | 1234 | 1388 | 1403 |
50,50, 1.75π rad) | (500,950, 0.3π rad) | 5 | 967 | 1066 | 1102 |
(50,50, 0.67π rad) | (950,950, 0.25π rad) | 10 | 1355 | 1497 | 1509 |
(50,50, 0.7π rad) | (950,700, 1.5π rad) | 10 | 1244 | 1403 | 1438 |
(500,20, 2π rad) | (950,950, 0.25π rad) | 15 | 1046 | 1203 | 1235 |
(50,50, 2π rad) | (950,950, 0.8π rad) | 15 | 1375 | 1524 | 1566 |
[1] |
|
[2] |
|
[3] |
左松涛, 毛占利, 范传刚, 等. 基于地铁站场景的改进型Dijkstra算法疏散路径规划研究[J]. 铁道科学与工程学报, 2023, 20(5): 1624-1635.
|
|
|
[4] |
何志强, 专祥涛, 梁杰, 等. 基于区域人工势场的无人船目标跟踪策略研究[J]. 中国造船, 2023, 64(1): 236-245.
|
|
|
[5] |
|
[6] |
张家闻, 房浩霖, 李家旺. 基于复杂约束条件的欠驱动AUV三维路径规划[J]. 兵工学报, 2022, 43(6): 1407-1414.
doi: 10.12382/bgxb.2021.0340 |
doi: 10.12382/bgxb.2021.0340 |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
doi: 10.23919/JSEE.2022.000142 |
[16] |
|
[17] |
吴立尧, 苏析超, 王垒, 等. 有人/无人机编队队形集结控制研究[J]. 系统工程与电子技术, 2023, 45(7): 2192-2202.
doi: 10.12305/j.issn.1001-506X.2023.07.30 |
doi: 10.12305/j.issn.1001-506X.2023.07.30 |
|
[18] |
王福仪, 孟秀云, 张海阔. 基于ε-level蝙蝠算法的无人机三维航迹规划[J]. 北京航空航天大学学报, 2024, 50(5):1593-1603.
|
|
|
[19] |
|
[20] |
|
[21] |
陈良剑, 赵文龙, 娄嘉骏. 基于RRT的动态规避航迹规划算法[J]. 现代计算机, 2021(22): 72-76, 80.
|
|
[1] | LIU Fang, LI Shiwei, LU Xi, GUO Ce’an. Prediction of Peak Overpressure of Underwater Cylindrical Charge Based on PSO-CNN-XGBoost [J]. Acta Armamentarii, 2024, 45(5): 1602-1612. |
[2] | LI Huanhuan, LIU Hui, GAI Jiangtao, LI Xunming. Steering Control of Dual-motor Coupling Drive Tracked Vehicle Based on PSO PID Parameter Optimization [J]. Acta Armamentarii, 2024, 45(3): 916-924. |
[3] | WANG Lei, XU Chao, LI Miao, ZHAO Huiwu. Improved Particle Swarm Optimization Algorithm for Cooperative Task Assignment of Multiple vehicles [J]. Acta Armamentarii, 2023, 44(8): 2224-2232. |
[4] | WANG Weijia, WANG Yubing, TIAN Jin, MAO Zhaojun, DU linlin. Optimal Configuration of Aircraft Swarm’s Active Localization with One Transmitter and Multiple Receivers [J]. Acta Armamentarii, 2023, 44(6): 1655-1664. |
[5] | FAN Boyang, ZHAO Gaopeng, BO Yuming, WU Xiang. Collaborative Task Allocation Method for Multi-Target Air-Ground Heterogeneous Unmanned System [J]. Acta Armamentarii, 2023, 44(6): 1564-1575. |
[6] | CHEN Meishan, LIU Ying, ZENG Weigui, QIAN Kun. Dynamic Jamming Resource Allocation Strategy of MALD [J]. Acta Armamentarii, 2023, 44(5): 1443-1455. |
[7] | ZHOU Xiaotian, REN Hongbin, SU Bo, QI Zhiquan, WANG Yang. Hierarchical Trajectory Planning Algorithm based on Differential Flatness [J]. Acta Armamentarii, 2023, 44(2): 394-405. |
[8] | ZHANG Yuanbo, XIANG Changle, WANG Weida, CHEN Yongdan. A Particle Swarm Optimization and Ant Colony Optimization Fusion Algorithm-based Model Predictve Torque Coordnation Control Strategy for Distributed Electric Drive Vehicle [J]. Acta Armamentarii, 2023, 44(11): 3253-3258. |
[9] | TANG Zeyue, LIU Haiou, XUE Mingxuan, CHEN Huiyan, GONG Xiaojie, TAO Junfeng. Trajectory Tracking Control of Dual Independent Electric Drive Unmanned Tracked Vehicle Based on MPC-MFAC [J]. Acta Armamentarii, 2023, 44(1): 129-139. |
[10] | ZHANG Song, HOU Ming-shan. Trajectory Optimization of Aerocraft Based on Shaping and Dimension Reduction [J]. Acta Armamentarii, 2016, 37(6): 1125-1130. |
[11] | SHUAI Yong, SONG Tai-liang, WANG Jian-ping, SHEN Hong. An Improved Parallel Prediction Model of Equipment Support Capability [J]. Acta Armamentarii, 2016, 37(6): 1089-1095. |
[12] | ZHANG Yong-qiang, XU Zong-chang, SUN Han-bing, HU Chun-yang. Optimization of Carried Spare Parts Based on Monte Carlo Simulation and Parallel Particle Swarm Optimization Algorithm [J]. Acta Armamentarii, 2016, 37(1): 122-130. |
[13] | ZHU Xia, CHEN Ren-wen, XIA Hua-kang, ZHANG Piao-yan. A Novel Image Registration Based on Cultural Particle Swarm Optimization Algorithm [J]. Acta Armamentarii, 2015, 36(6): 1033-1039. |
[14] | ZHANG Meng-ying, TANG Qian-gang, HAN Xiao-jun, ZHANG Qing-bin, GE Jian-quan. Iterative Method to Solving Re-entry Trajectory Optimization with Complex Constraints [J]. Acta Armamentarii, 2015, 36(6): 1015-1023. |
[15] | YUAN Yan-bo, ZHANG Ke, XUE Xiao-dong. Optimization of Glide Trajectory of Guided Bombs Using a Radau Pseudo-spectral Method [J]. Acta Armamentarii, 2014, 35(8): 1179-1186. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||