Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (6): 2065-2075.doi: 10.12382/bgxb.2023.0180
Previous Articles Next Articles
LIU Peng1, XIONG Zeyu1, JING Wenbo2,*(), FENG Xuan2, ZHANG Junhao2, LIU Tongbo2, WU Xueni2, XIA Xuan2, WAN Linlin1, ZHAO Haili1
Received:
2023-03-07
Online:
2023-06-01
Contact:
JING Wenbo
CLC Number:
LIU Peng, XIONG Zeyu, JING Wenbo, FENG Xuan, ZHANG Junhao, LIU Tongbo, WU Xueni, XIA Xuan, WAN Linlin, ZHAO Haili. Degrad Target Detection Algorithm[J]. Acta Armamentarii, 2024, 45(6): 2065-2075.
Add to citation manager EndNote|Ris|BibTeX
参数 | 数值 |
---|---|
初始学习率设置 | 0.005 |
学习率调整算法 | 余弦退火算法 |
训练周期 | 100epoch |
梯度下降优化算法 | SGD算法 |
批量处理样本数量 | 16 |
IoU阈值 | 0.5 |
置信度阈值 | 0.5 |
Table 1 Initial parameter setting
参数 | 数值 |
---|---|
初始学习率设置 | 0.005 |
学习率调整算法 | 余弦退火算法 |
训练周期 | 100epoch |
梯度下降优化算法 | SGD算法 |
批量处理样本数量 | 16 |
IoU阈值 | 0.5 |
置信度阈值 | 0.5 |
序号 | 目标 检测算法 | 图片分辨 率/像素 | mAP/% | F1/% | FPS/(帧·s) |
---|---|---|---|---|---|
1 | FASTER R-CNN | 600×600 | 79.51 | 69.81 | 15.16 |
2 | SSD | 600×600 | 64.91 | 60.91 | 25.23 |
3 | NanoDet | 320×320 | 70.12 | 61.82 | 60.82 |
4 | Cascade R-CNN | 640×640 | 83.48 | 80.18 | 20.18 |
5 | YOLOv5 | 640×640 | 83.02 | 80.71 | 49.12 |
6 | YOLOE | 640×640 | 90.88 | 88.92 | 52.74 |
7 | YOLOX | 640×640 | 86.55 | 86.12 | 52.60 |
Table 2 Test results of various target detection algorithms
序号 | 目标 检测算法 | 图片分辨 率/像素 | mAP/% | F1/% | FPS/(帧·s) |
---|---|---|---|---|---|
1 | FASTER R-CNN | 600×600 | 79.51 | 69.81 | 15.16 |
2 | SSD | 600×600 | 64.91 | 60.91 | 25.23 |
3 | NanoDet | 320×320 | 70.12 | 61.82 | 60.82 |
4 | Cascade R-CNN | 640×640 | 83.48 | 80.18 | 20.18 |
5 | YOLOv5 | 640×640 | 83.02 | 80.71 | 49.12 |
6 | YOLOE | 640×640 | 90.88 | 88.92 | 52.74 |
7 | YOLOX | 640×640 | 86.55 | 86.12 | 52.60 |
模型 | 改进策略 | mAP/% | FPS/ (帧·s-1) | Parameters/ M |
---|---|---|---|---|
A | YOLOv5 | 83.02 | 49.12 | 7.60 |
B | A+主干网络改进 | 82.86 | 56.25 | 6.34 |
C | B+表征注意力机制 | 85.24 | 54.68 | 6.52 |
D | C+三分支自适应空间特征融合 | 88.91 | 52.74 | 7.05 |
E | D+损失函数改进 | 90.88 | 52.74 | 7.05 |
Table 4 Results of YOLOE model ablation experiments
模型 | 改进策略 | mAP/% | FPS/ (帧·s-1) | Parameters/ M |
---|---|---|---|---|
A | YOLOv5 | 83.02 | 49.12 | 7.60 |
B | A+主干网络改进 | 82.86 | 56.25 | 6.34 |
C | B+表征注意力机制 | 85.24 | 54.68 | 6.52 |
D | C+三分支自适应空间特征融合 | 88.91 | 52.74 | 7.05 |
E | D+损失函数改进 | 90.88 | 52.74 | 7.05 |
[1] |
穆原子, 丁力军, 陈锋. 武器装备试验靶标建设与发展研究[J]. 国防科技, 2013, 34(3): 40-44.
|
|
|
[2] |
武治国, 刘伟宁. 抗光线干扰的复杂背景下运动靶标实时跟踪技术[J]. 仪器仪表学报, 2014(增刊1): 34-38.
|
|
|
[3] |
顾玲嘉. 活动靶标图像处理技术研究[D]. 长春: 长春理工大学, 2005.
|
|
|
[4] |
于博文, 吕明. 改进的YOLOv3算法及其在军事目标检测中的应用[J]. 兵工学报, 2022, 43(2): 345-354.
doi: 10.3969/j.issn.1000-1093.2022.02.012 |
|
|
[5] |
杨传栋, 刘桢, 石胜斌. 基于CNN的弹载图像目标检测方法研究[J]. 战术导弹技术, 2019, 196(4):85-92.
|
|
|
[6] |
张欣, 张永强, 何斌, 等. 基于YOLOv4-tiny的遥感图像飞机目标检测技术研究[J]. 光学技术, 2021, 47(3): 344-351.
|
|
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
doi: 10.1109/TPAMI.2015.2389824 pmid: 26353135 |
[15] |
鞠默然, 罗江宁, 王仲博, 等. 融合注意力机制的多尺度目标检测算法[J]. 光学学报, 2020, 40(13): 132-140.
|
|
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[1] | LI Jing, SUN Zhonghui, NI Jingping, DUAN Chenxi, CUI Changqing. Principle Error Analysis of Four-light-screen Optical Target with Impact Coordinates Measurement under Oblique Incidence [J]. Acta Armamentarii, 2024, 45(6): 1965-1973. |
[2] | LI Yanhe, ZOU Nan, ZHANG Limin, LIU Bing, XIU Xian, WU Zongzheng, FU Keyi. Correlation Method of Acoustic Characteristics of Multiple Targets during Water Entry [J]. Acta Armamentarii, 2024, 45(6): 1921-1932. |
[3] | WU Lingxiao, KANG Jiayin, JI Yunxiang, MA Hanyan. Infrared and Visible Image Fusion Using Dual-stream Generative Adversarial Network with Multiple Discriminators [J]. Acta Armamentarii, 2024, 45(6): 1799-1812. |
[4] | LIANG Guolong, LUO Junge, HAO Yu, FU Jin. An Array Extension Method Based on Combination of Sub-array Covariance Matrices [J]. Acta Armamentarii, 2024, 45(5): 1717-1724. |
[5] | SHEN Ying, LIU Xiancai, WANG Shu, HUANG Feng. Real-time Detection of Low-altitude Camouflaged Targets Based on Polarization Encoded Images [J]. Acta Armamentarii, 2024, 45(5): 1374-1383. |
[6] | YIN Guohua, QI Yongsheng, LIU Liqiang, SU Jianqiang, ZHANG Lijie. Lightweight and Fast Target Tracking Algorithm Based on Ghost-TiFPN [J]. Acta Armamentarii, 2024, 45(5): 1703-1716. |
[7] | KE Huicheng, PENG Zilong, ZHOU Fulin, CHEN Tianbao. Prediction Method and Characteristics of Static Acoustic Scattering from Marine Propellers [J]. Acta Armamentarii, 2024, 45(5): 1523-1533. |
[8] | WU Hao, LI Dongguang, WANG Yong’an. Time-to-go Estimation Method for Anti-ship Missiles with Large Lead Angle in Three-dimensional Space [J]. Acta Armamentarii, 2024, 45(5): 1449-1459. |
[9] | LIN Sen, WANG Jingang, GAO Hongwei. Battlefield Image Dehazing Based on Global Compensation Attention Mechanism [J]. Acta Armamentarii, 2024, 45(4): 1344-1353. |
[10] | LIANG Yuan, QI Guoqing, CHEN Ye, LI Yinya, SHENG Andong. Event-triggered Surface Extended Target Tracking with Intermittent Measurements [J]. Acta Armamentarii, 2024, 45(4): 1219-1228. |
[11] | SONG Xiaoru, LIU Kang, GAO Song, CHEN Chaobo, YAN Kun. Research on Improved YOLOv5-based Military Target Recognition Algorithm Used in Complex Battlefield Environment [J]. Acta Armamentarii, 2024, 45(3): 934-947. |
[12] | YUAN Bowen, LIU Dongbo, LIU Zhaopeng, YANG Weilong. Node Importance Ranking Method for Target SoS Network [J]. Acta Armamentarii, 2024, 45(2): 488-496. |
[13] | ZHANG Liang, DU Qinglei, ZHANG Zhaojian, WANG Yongliang. A Dense False-target Jamming Main-lobe Blanking Algorithm in Slow-time Dimension [J]. Acta Armamentarii, 2024, 45(2): 606-617. |
[14] | YANG Jiaming, PAN Yue, WANG Qiang, CAO Huaigang, GAO Sunpei. Research on Deep Learning Method of Underwater Weak Target Tracking [J]. Acta Armamentarii, 2024, 45(2): 385-394. |
[15] | MA Xiao, LI Xinqi, LIU Zhenyuan, DI Chao. A Fast Target Tracking Method Based on BACF [J]. Acta Armamentarii, 2024, 45(2): 497-503. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||