Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (6): 1942-1953.doi: 10.12382/bgxb.2023.0072
Previous Articles Next Articles
GAO Hua, SHAN Chunlai*(), LIU Jun, ZHANG Fanfan, LIU Pengke
Received:
2023-02-10
Online:
2023-08-14
Contact:
SHAN Chunlai
CLC Number:
GAO Hua, SHAN Chunlai, LIU Jun, ZHANG Fanfan, LIU Pengke. Overall Load Extrapolation Method Based on Frequency and Extreme Value Extrapolation[J]. Acta Armamentarii, 2024, 45(6): 1942-1953.
Add to citation manager EndNote|Ris|BibTeX
类别 | 均值 | 标准差 | 前20个极大值 | 前20个极小值 | ||||
---|---|---|---|---|---|---|---|---|
最大值 | 均值 | 中位数 | 最小值 | 均值 | 中位数 | |||
外推前 | 10.0884 | 0.0111 | 10.1288 | 10.1227 | 10.1214 | 10.0533 | 10.0574 | 10.0574 |
方法1 | 10.0888 | 0.0111 | 10.1267 | 10.1202 | 10.1193 | 10.0504 | 10.0585 | 10.0594 |
方法2 | 10.0884 | 0.011 | 10.1277 | 10.1268 | 10.1277 | 10.0546 | 10.055 | 10.0546 |
方法3 | 10.0886 | 0.011 | 10.1285 | 10.126 | 10.126 | 10.0495 | 10.055 | 10.0555 |
Table 1 Statistical comparison before and after frequency extrapolation by 3 methodsmm
类别 | 均值 | 标准差 | 前20个极大值 | 前20个极小值 | ||||
---|---|---|---|---|---|---|---|---|
最大值 | 均值 | 中位数 | 最小值 | 均值 | 中位数 | |||
外推前 | 10.0884 | 0.0111 | 10.1288 | 10.1227 | 10.1214 | 10.0533 | 10.0574 | 10.0574 |
方法1 | 10.0888 | 0.0111 | 10.1267 | 10.1202 | 10.1193 | 10.0504 | 10.0585 | 10.0594 |
方法2 | 10.0884 | 0.011 | 10.1277 | 10.1268 | 10.1277 | 10.0546 | 10.055 | 10.0546 |
方法3 | 10.0886 | 0.011 | 10.1285 | 10.126 | 10.126 | 10.0495 | 10.055 | 10.0555 |
n | 最大值 | 均值 | 标准差 |
---|---|---|---|
1000 | 3.0768 | -0.1356 | 2.3830 |
3000 | 1.6686 | 0.2764 | 2.1118 |
5000 | -0.81 | 0.1148 | 1.2565 |
Table 2 Probability density difference statistics before and after extrapolation under different data volumes (Method 3)
n | 最大值 | 均值 | 标准差 |
---|---|---|---|
1000 | 3.0768 | -0.1356 | 2.3830 |
3000 | 1.6686 | 0.2764 | 2.1118 |
5000 | -0.81 | 0.1148 | 1.2565 |
外推方法 | 关键因素 | 优点 | 缺点 |
---|---|---|---|
方法1 | 核函数的选择,最优带宽确定 | 与样本的分布类型无关,任意形状载荷谱的有效估计 | 需要大量样本数据,核函数和带宽选择是有影响的 |
方法2 | 马尔可夫分布初始状态,状态转移矩阵 | 基本不需要调参,可兼顾载荷与时间间隔[ | 需要判断是否马氏收敛,求解马尔可夫初始状态繁琐 |
方法3 | 最小样本长度 | 操作简单、外推方便 | 样本长度需要校验 |
Table 3 Comparison of key factors and advantage/disadvantage of three extrapolation methods
外推方法 | 关键因素 | 优点 | 缺点 |
---|---|---|---|
方法1 | 核函数的选择,最优带宽确定 | 与样本的分布类型无关,任意形状载荷谱的有效估计 | 需要大量样本数据,核函数和带宽选择是有影响的 |
方法2 | 马尔可夫分布初始状态,状态转移矩阵 | 基本不需要调参,可兼顾载荷与时间间隔[ | 需要判断是否马氏收敛,求解马尔可夫初始状态繁琐 |
方法3 | 最小样本长度 | 操作简单、外推方便 | 样本长度需要校验 |
[1] |
|
[2] |
|
[3] |
张建成. 基于核函数的数控车床载荷谱编制关键技术研究[D]. 长春: 吉林大学, 2019.
|
|
|
[4] |
刘海鸥, 张文胜, 徐宜, 等. 基于核密度估计的履带车辆传动轴载荷谱编制[J]. 兵工学报, 2017, 38(9): 1830-1838.
doi: 10.3969/j.issn.1000-1093.2017.09.021 |
|
|
[5] |
高天宇, 李焕良, 郑铮, 等. 基于雨流频次外推的ZLK50型装载机液压缸载荷谱编制[J]. 机械强度, 2017, 39(4): 951-956.
|
|
|
[6] |
|
[7] |
|
[8] |
武玉倩. 基于隐马尔可夫模型的装载机载荷谱编制方法研究[D]. 长春: 吉林大学, 2017.
|
|
|
[9] |
|
[10] |
|
[11] |
江柱锦. 混合动力装载机电机载荷外推方法研究[D]. 长春: 吉林大学, 2018.
|
|
|
[12] |
翟新婷. 基于外推改进的工程机械载荷谱编制方法研究[D]. 长春: 吉林大学, 2018.
|
|
|
[13] |
何佳龙. 数控车床切削力谱的编制及其在功能部件可靠性试验中的应用[D]. 长春: 吉林大学, 2017.
|
|
|
[14] |
|
[15] |
高飞, 潘长明, 孙磊. Bayes匹配场地声参数反演:多步退火Gibbs采样算法[J]. 兵工学报, 2017, 38(7): 1385-1394.
doi: 10.3969/j.issn.1000-1093.2017.07.017 |
doi: 10.3969/j.issn.1000-1093.2017.07.017 |
|
[16] |
|
[17] |
|
[18] |
李斌潮, 唐靖, 殷之平. 基于频率雨流计数法的发动机振动疲劳载荷谱编制[J]. 航空工程进展, 2021, 12(1): 24-29.
|
|
|
[19] |
|
[20] |
|
[21] |
|
[1] | WEN Hao, HOU Baolin, LIN Yubin, JIN Xin. Dynamic Model Uncertain Parameter Identification for A Curved Chain Rotary Shell Magazine [J]. Acta Armamentarii, 2024, 45(5): 1460-1471. |
[2] | CHEN Dong, QIAN Linfang, CHEN Zhiqun, CHEN Longmiao, ZOU Quan, CHEN Junhua. An Improved Quasi-continuous Algorithm for Rotational Shell Magazine Position Control [J]. Acta Armamentarii, 2024, 45(5): 1436-1448. |
[3] | TIAN Hengxu, LIN Shengye, LI Hao, WU Yinghao, WANG Maosen, DAI Jinsong. Fatigue Optimization of Extractor Skateboard in a High-Firing-Speed Automatic Cannon Based on Kriging Model [J]. Acta Armamentarii, 0, (): 0-0. |
[4] | . Implicit Lyapunov Function-based Variable Gain Super-Twisting Sliding Mode Control of an Ammunition Transfer Manipulator [J]. Acta Armamentarii, 0, (): 0-0. |
[5] | WEI Jianfeng, ZHANG Faping, LU Jiping, YANG Xiangfei, YANG Pengkai. Fault Diagnosis for Gun’s Anti-recoil Device Based on Gaussian Model and RMSD-DS [J]. Acta Armamentarii, 2023, 44(10): 3101-3114. |
[6] | HUANG Wenkuan, QIAN Linfang, YIN Qiang, LIU Taisu. Fault Diagnosis Method of Modular Charge Feeding Mechanism Based on Transfer Learning [J]. Acta Armamentarii, 2023, 44(10): 2964-2974. |
[7] | LIU Pengke, YANG Diao, XU Yaofeng, NING Bianfang, WANG Jun, LIU Huan. Surface Temperature and Its Gradient of Gun Barrel Bore [J]. Acta Armamentarii, 2022, 43(6): 1225-1232. |
[8] | SUN Guoxuan, GONG Xinyu, SHI Yan, XIE Jipeng, LU Bin. PID Parameter Tuning of Self-propelled Antiaircraft Gun Servo System Based on Differential Evolution Algorithm [J]. Acta Armamentarii, 2021, 42(5): 903-912. |
[9] | LI Zixuan, YANG Guolai, LIU Ning. Finite Element Simulation Model for Electromagnetic Buffer under Intensive Impact Load [J]. Acta Armamentarii, 2021, 42(5): 913-923. |
[10] | ZHAO Yiqian, WU Tianyu, GU Sen, LI Qingchen, LI Yajun. Ergonomic Evaluation and Optimization of Handwheel Size of Sighting Device for Towed Gun-howitzer [J]. Acta Armamentarii, 2021, 42(2): 268-280. |
[11] | LIN Tong, QIAN Linfang, FU Jiawei, WANG Mingming. Parameter Identification and Sensitivity analysis of Gun Elevating Equilibrator [J]. Acta Armamentarii, 2020, 41(9): 1736-1744. |
[12] | NIE Shoucheng, QIAN Linfang, CHEN Zhiqun, WEI Yukai, YIN Qiang. Adaptive Sliding Mode Control for Electro-hydraulic Servo System of Ammunition Manipulator Based on Disturbance Observer [J]. Acta Armamentarii, 2020, 41(9): 1745-1751. |
[13] | ZHANG Cheng, LIU Zhaoyang, GU Keqiu. Buffering Mechanism and Characteristic Optimization of Ultra-light Artillery Backtrail [J]. Acta Armamentarii, 2020, 41(9): 1752-1761. |
[14] | YUE Jiawei, DAI Bo, WU Xu, YANG Lin. The Impact of Flow Pulsation of Axial Piston Pump on Gun Pitching Accuracy of a Multiple Rocket Launcher [J]. Acta Armamentarii, 2019, 40(9): 1781-1786. |
[15] | YU Qingbo, YANG Guolai, GE Jianli. Numeric Analysis of Barrel Heat-pressure Joint Effect Based on Follow-up Boundary [J]. Acta Armamentarii, 2019, 40(4): 697-707. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||