Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (2): 516-526.doi: 10.12382/bgxb.2022.0673
Previous Articles Next Articles
QIN Guohua1,2,*(), LOU Weida2, LIN Feng1, XU Yong1
Received:
2022-07-26
Online:
2024-02-29
Contact:
QIN Guohua
CLC Number:
QIN Guohua, LOU Weida, LIN Feng, XU Yong. A Novel Method of Stability Judgment and Milling Parameter Optimization Based on Cotes Integration Method and Neural Network[J]. Acta Armamentarii, 2024, 45(2): 516-526.
Add to citation manager EndNote|Ris|BibTeX
参数 | 数值 |
---|---|
阻尼比ζ | 0.011 |
固有圆频率ωn/Hz | 922×2π |
刀具模态质量mt/kg | 0.03993 |
切向切削力系数Kt/(N·m-2) | 6×108 |
径向切削力系数Kr/(N·m-2) | 2×108 |
铣刀齿数N | 2 |
铣刀直径D/mm | 19.05 |
径向切深ae/mm | 19.05 |
铣削方式 | 顺铣 |
Table 1 One-DOF milling system parameters
参数 | 数值 |
---|---|
阻尼比ζ | 0.011 |
固有圆频率ωn/Hz | 922×2π |
刀具模态质量mt/kg | 0.03993 |
切向切削力系数Kt/(N·m-2) | 6×108 |
径向切削力系数Kr/(N·m-2) | 2×108 |
铣刀齿数N | 2 |
铣刀直径D/mm | 19.05 |
径向切深ae/mm | 19.05 |
铣削方式 | 顺铣 |
参数 | 数值 |
---|---|
模态阻尼c/(N·s·m-1) | 18.16 |
固有频率ωn/Hz | 1423 |
模态质量mt/kg | 0.029 |
模态刚度/(106N·m-1) | 2.31 |
切向切削力系数Kt/(108N·m-2) | 13.85 |
径向切削力系数Kr/(108N·m-2) | 11.65 |
铣刀齿数N | 3 |
铣刀直径D/mm | 12 |
Table 2 Two-DOF milling system parameters
参数 | 数值 |
---|---|
模态阻尼c/(N·s·m-1) | 18.16 |
固有频率ωn/Hz | 1423 |
模态质量mt/kg | 0.029 |
模态刚度/(106N·m-1) | 2.31 |
切向切削力系数Kt/(108N·m-2) | 13.85 |
径向切削力系数Kr/(108N·m-2) | 11.65 |
铣刀齿数N | 3 |
铣刀直径D/mm | 12 |
序 号 | 转速x1/ (r·min-1) | 径向浸入 比x2 | 轴向切深y/m | 误差/ % | |
---|---|---|---|---|---|
原始值 | 预测值 | ||||
1 | 5800 | 0.01 | 0.003788942 | 0.003698179 | 2.3955 |
2 | 5760 | 0.05 | 0.001762478 | 0.001754662 | 0.4434 |
3 | 5800 | 0.1 | 0.001344508 | 0.00130052 | 3.2716 |
4 | 2780 | 0.15 | 0.000550624 | 0.000544134 | 1.1786 |
5 | 5900 | 0.2 | 0.000649173 | 0.000624724 | 3.7663 |
6 | 3180 | 0.25 | 0.000507705 | 0.000504448 | 0.6416 |
7 | 5000 | 0.3 | 0.000367626 | 0.000358995 | 2.3478 |
8 | 4800 | 0.35 | 0.000513988 | 0.000517069 | -0.5993 |
9 | 5780 | 0.4 | 0.000525816 | 0.000498949 | 5.1096 |
10 | 4820 | 0.45 | 0.00036719 | 0.000353512 | 3.7250 |
11 | 5800 | 0.5 | 0.000340852 | 0.000330868 | 2.9290 |
12 | 2900 | 0.55 | 0.000190949 | 0.000180258 | 5.5987 |
13 | 3360 | 0.6 | 0.000141559 | 0.000140361 | 0.8458 |
14 | 3060 | 0.65 | 0.000141542 | 0.000142642 | -0.7772 |
15 | 5660 | 0.7 | 0.00027032 | 0.000270943 | -0.2305 |
16 | 3120 | 0.75 | 0.000145395 | 0.000148787 | -2.3335 |
17 | 4940 | 0.8 | 0.000115155 | 0.000111805 | 2.9092 |
18 | 3640 | 0.9 | 0.000107789 | 0.00010285 | 4.5815 |
19 | 4020 | 0.95 | 0.000129277 | 0.000131375 | -1.6234 |
20 | 5520 | 1 | 0.000115811 | 0.000116823 | -0.8742 |
Table 3 Comparison of the predicted value of the partial sample test data with the original value
序 号 | 转速x1/ (r·min-1) | 径向浸入 比x2 | 轴向切深y/m | 误差/ % | |
---|---|---|---|---|---|
原始值 | 预测值 | ||||
1 | 5800 | 0.01 | 0.003788942 | 0.003698179 | 2.3955 |
2 | 5760 | 0.05 | 0.001762478 | 0.001754662 | 0.4434 |
3 | 5800 | 0.1 | 0.001344508 | 0.00130052 | 3.2716 |
4 | 2780 | 0.15 | 0.000550624 | 0.000544134 | 1.1786 |
5 | 5900 | 0.2 | 0.000649173 | 0.000624724 | 3.7663 |
6 | 3180 | 0.25 | 0.000507705 | 0.000504448 | 0.6416 |
7 | 5000 | 0.3 | 0.000367626 | 0.000358995 | 2.3478 |
8 | 4800 | 0.35 | 0.000513988 | 0.000517069 | -0.5993 |
9 | 5780 | 0.4 | 0.000525816 | 0.000498949 | 5.1096 |
10 | 4820 | 0.45 | 0.00036719 | 0.000353512 | 3.7250 |
11 | 5800 | 0.5 | 0.000340852 | 0.000330868 | 2.9290 |
12 | 2900 | 0.55 | 0.000190949 | 0.000180258 | 5.5987 |
13 | 3360 | 0.6 | 0.000141559 | 0.000140361 | 0.8458 |
14 | 3060 | 0.65 | 0.000141542 | 0.000142642 | -0.7772 |
15 | 5660 | 0.7 | 0.00027032 | 0.000270943 | -0.2305 |
16 | 3120 | 0.75 | 0.000145395 | 0.000148787 | -2.3335 |
17 | 4940 | 0.8 | 0.000115155 | 0.000111805 | 2.9092 |
18 | 3640 | 0.9 | 0.000107789 | 0.00010285 | 4.5815 |
19 | 4020 | 0.95 | 0.000129277 | 0.000131375 | -1.6234 |
20 | 5520 | 1 | 0.000115811 | 0.000116823 | -0.8742 |
轴向切深 ap/mm | 径向切深 ae/mm | 主轴转速 Ω/(r·min-1) | 每齿进给量 fz/mm |
---|---|---|---|
0~4 | 0~12 | 2000~6000 | 0.01~0.83 |
Table 4 Value range of boundary condition
轴向切深 ap/mm | 径向切深 ae/mm | 主轴转速 Ω/(r·min-1) | 每齿进给量 fz/mm |
---|---|---|---|
0~4 | 0~12 | 2000~6000 | 0.01~0.83 |
[1] |
doi: 10.1016/S0007-8506(07)62342-7 URL |
[2] |
doi: 10.1002/nme.v61:1 URL |
[3] |
doi: 10.1016/j.jsv.2007.11.040 URL |
[4] |
doi: 10.1016/j.ijmachtools.2010.01.003 URL |
[5] |
doi: 10.1007/s00170-021-07713-z |
[6] |
doi: 10.1007/s00170-021-07262-5 |
[7] |
doi: 10.1007/s00170-022-08705-3 |
[8] |
doi: 10.1016/j.ymssp.2017.10.008 URL |
[9] |
doi: 10.1007/s00170-019-04316-7 |
[10] |
秦国华, 娄维达, 吴竹溪, 等. 基于过程阻尼和结构模态耦合的铣削稳定性分析与实验验证[J]. 中国科学:技术科学, 2020, 50(9): 1211-1225.
|
doi: 10.1360/SST-2019-0325 URL |
|
[11] |
张洁, 刘成颖, 郑烽, 等. 基于铣削动力学的刀具强迫振动抑制研究[J]. 机械工程学报, 2018, 54(17): 94-99.
doi: 10.3901/JME.2018.17.094 |
doi: 10.3901/JME.2018.17.094 |
|
[12] |
doi: 10.1109/TMECH.2021.3135808 URL |
[13] |
曾莎莎, 彭卫平, 雷金. 基于混合算法的薄壁件铣削加工工艺参数优化[J]. 中国机械工程, 2017, 28(7): 842-845, 851.
|
|
|
[14] |
doi: 10.1016/j.ijmachtools.2019.103430 URL |
[15] |
doi: 10.1177/0954406219873932 URL |
[16] |
郭强, 李红霞, 李玉晓. 基于改进粒子群算法的数控加工参数优化研究[J]. 机械制造与自动化, 2021, 50(3): 132-135.
|
|
|
[17] |
刘献礼, 孙庆贞, 岳彩旭, 等. 基于数据挖掘技术的钛合金铣削工艺参数优化[J]. 计算机集成制造系统, 2022, 28(8): 2440-2448.
|
|
|
[18] |
曹宏瑞, 陈雪峰, 何正嘉. 主轴-切削交互过程建模与高速铣削参数优化[J]. 机械工程学报, 2013, 49(5): 161-166.
|
|
|
[19] |
胡瑞飞, 殷鸣, 刘雁, 等. 切削稳定性约束下的铣削参数优化技术研究[J]. 机械工程学报, 2017, 53(5): 190-198.
doi: 10.3901/JME.2017.05.190 |
doi: 10.3901/JME.2017.05.190 |
|
[20] |
doi: 10.1016/j.ijmachtools.2010.05.005 URL |
[21] |
doi: 10.1016/j.neunet.2020.07.021 URL |
[22] |
秦国华, 高杰, 叶海潮, 等. 基于融合指标和神经网络的刀具磨损预测[J]. 兵工学报, 2021, 42(9): 2013-2023.
doi: 10.3969/j.issn.1000-1093.2021.09.022 |
doi: 10.3969/j.issn.1000-1093.2021.09.022 |
|
[23] |
doi: 10.1109/TEVC.2007.892759 URL |
[1] | LIU Mengzhen, HUANG Guangyan, ZHANG Hong, ZHOU Hongyuan, LIU Siyu. Protective Material Crease Detection with Small Sample-driven Feature Segmented Neural Network [J]. Acta Armamentarii, 2024, 45(3): 963-974. |
[2] | MA Weining, HU Qiwei, CHEN Jing, JIA Xisheng. Joint Optimization of Selective Maintenance Decision and Mission Assignment for Equipment Groups [J]. Acta Armamentarii, 2024, 45(2): 407-416. |
[3] | LIU Zichang, LI Siyu, PEI Mochao, LIU Jie, MENG Shuo, WU Weiyi. Fault Diagnosis Method for Diesel Engine Based on Texture Analysis [J]. Acta Armamentarii, 2024, 45(2): 684-694. |
[4] | LIU Chang, LEI Hongbo, LIN Shiyao, FAN Shipeng, WANG Jiang. Firing Data Calculation Method for Laser Terminal Guidance Projectile Based on Multi-model Network [J]. Acta Armamentarii, 2023, 44(9): 2745-2755. |
[5] | YE Wenyu, WANG Chunyang, YU Jinyang, TUO Mingkan, WANG Zishuo. Multi-beam Scanning of Liquid Crystal Optical Phased Array Based on Greedy Algorithm [J]. Acta Armamentarii, 2023, 44(9): 2650-2660. |
[6] | ZHANG Kaige, LU Zhigang, NIE Tianchang, LI Zhiwei, GUO Yuqiang. Analysis of Soft Intelligent Edge Computing Technologies for Unmanned Systems [J]. Acta Armamentarii, 2023, 44(9): 2611-2621. |
[7] | CHEN Song, ZHU Dongsheng, ZUO Qinwen, HAN Chaoshuai. GA-PS Based Three-dimensional Space Source Inversion Algorithm [J]. Acta Armamentarii, 2023, 44(8): 2503-2520. |
[8] | ZHANG An, XU Shuangfei, BI Wenhao, XU Han. Weapon-target Assignment and Guidance Sequence Optimization in Air-to-Ground Multi-target Attack [J]. Acta Armamentarii, 2023, 44(8): 2233-2244. |
[9] | ZHOU Yu, CAO Ronggang, LI Ping, MA Xiao. A Fuze Burst Point Detection Method for Outfield Test Images [J]. Acta Armamentarii, 2023, 44(8): 2453-2464. |
[10] | WU Liyang, GUO Pengcheng, LIU Chao, LI Wenqiang. Radar Signal Modulation Type Recognition Based on Attention Mechanism Enhanced Residual Networks [J]. Acta Armamentarii, 2023, 44(8): 2310-2318. |
[11] | XIE Baoqi, LI Yingshun, WANG Debiao, SUI Huanhuan. Method for Evaluating Tank Gunner’s Sight System [J]. Acta Armamentarii, 2023, 44(8): 2414-2423. |
[12] | LIU Yi, REN Jihuan, WU Xiang, BO Yuming. Newly Equipped Armored Vehicle Classification Based on Integrated Transfer Learning [J]. Acta Armamentarii, 2023, 44(8): 2319-2328. |
[13] | LIU Yan, WANG Baichuan, YAN Junbo, YAN Zichen, SHI Zhenqing, HUANG Fenglei. Dynamic Response of Honeycomb Sandwich Plate with Negative Poisson’s Ratio under Penetration [J]. Acta Armamentarii, 2023, 44(7): 1938-1953. |
[14] | SONG Qiuyu, HU Jian, YAO Jianyong, BAI Yanchun, YANG Zhengyin. Output Feedback Control for Launch Platform Using Neural Network Observer and Output Constraint [J]. Acta Armamentarii, 2023, 44(7): 2184-2196. |
[15] | HUA Yingjie, LIU Jing, SHAO Yubin, DUO Lin. Language Identification in Battlefield Environments [J]. Acta Armamentarii, 2023, 44(7): 2197-2206. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||