Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (10): 3619-3630.doi: 10.12382/bgxb.2023.0742
Previous Articles Next Articles
ZHOU Hao, BAO Xiaopeng*(), ZHANG Honggang
Received:
2023-08-11
Online:
2024-02-06
Contact:
BAO Xiaopeng
CLC Number:
ZHOU Hao, BAO Xiaopeng, ZHANG Honggang. Improved Design of Phase Modulation Compensation and Analysis of Disturbance Suppression for UAV Active Disturbance Rejection Control[J]. Acta Armamentarii, 2024, 45(10): 3619-3630.
Add to citation manager EndNote|Ris|BibTeX
参数 | 数值 |
---|---|
m/kg | 1.5 |
l/m | 0.225 |
g/(m·s-2) | 9.81 |
Ix/(kg·m2) | 0.03 |
Iy/(kg·m2) | 0.03 |
Iz/(kg·m2) | 0.03 |
Table 1 Quadrotor UAV body parameters[9]
参数 | 数值 |
---|---|
m/kg | 1.5 |
l/m | 0.225 |
g/(m·s-2) | 9.81 |
Ix/(kg·m2) | 0.03 |
Iy/(kg·m2) | 0.03 |
Iz/(kg·m2) | 0.03 |
Fig.5 The degree of coincidence between the disturbance amount compensated by NLSEF and the actual disturbance under different compensation coefficient values
组件 | 符号 | 数值 | 组件 | 符号 | 数值 | 组件 | 符号 | 数值 |
---|---|---|---|---|---|---|---|---|
TD | r | 10.2 | ESO | β1 | 30 | NLSEF | a1n | 0.65 |
h | 0.154 | β2 | 300 | a2n | 1.6 | |||
调相 补偿 器 | a1 | 0.43 | β3 | 1000 | k1 | 28.6 | ||
a2 | 2 | a1e | 0.5 | k2 | 22.4 | |||
λ | 3.8 | a2e | 0.25 | σ | 0.05 | |||
σ1 | 1 | σ | 0.05 | bi | 35.7 |
Table 2 Control parameter setting values of PCADRC
组件 | 符号 | 数值 | 组件 | 符号 | 数值 | 组件 | 符号 | 数值 |
---|---|---|---|---|---|---|---|---|
TD | r | 10.2 | ESO | β1 | 30 | NLSEF | a1n | 0.65 |
h | 0.154 | β2 | 300 | a2n | 1.6 | |||
调相 补偿 器 | a1 | 0.43 | β3 | 1000 | k1 | 28.6 | ||
a2 | 2 | a1e | 0.5 | k2 | 22.4 | |||
λ | 3.8 | a2e | 0.25 | σ | 0.05 | |||
σ1 | 1 | σ | 0.05 | bi | 35.7 |
阶段 | 方法 | 最大值/m | 均值/m | 标准差/m |
---|---|---|---|---|
空中避障 轨迹段 | 串级PID控制 | 0.2690 | 0.0596 | 0.0477 |
PID-NLADRC | 0.1260 | 0.0340 | 0.0186 | |
PID-PCADRC | 0.1110 | 0.0296 | 0.0131 | |
锥形螺旋 轨迹段 | 串级PID控制 | 0.2560 | 0.1150 | 0.0582 |
PID-NLADRC | 0.1660 | 0.0601 | 0.0397 | |
PID-PCADRC | 0.1060 | 0.0491 | 0.0249 | |
合段 | 串级PID控制 | 0.2690 | 0.0826 | 0.0590 |
PID-NLADRC | 0.1660 | 0.0449 | 0.0320 | |
PID-PCADRC | 0.1110 | 0.0377 | 0.0212 |
Table 3 Statistics of trajectory tracking deviations under undisturbed conditions
阶段 | 方法 | 最大值/m | 均值/m | 标准差/m |
---|---|---|---|---|
空中避障 轨迹段 | 串级PID控制 | 0.2690 | 0.0596 | 0.0477 |
PID-NLADRC | 0.1260 | 0.0340 | 0.0186 | |
PID-PCADRC | 0.1110 | 0.0296 | 0.0131 | |
锥形螺旋 轨迹段 | 串级PID控制 | 0.2560 | 0.1150 | 0.0582 |
PID-NLADRC | 0.1660 | 0.0601 | 0.0397 | |
PID-PCADRC | 0.1060 | 0.0491 | 0.0249 | |
合段 | 串级PID控制 | 0.2690 | 0.0826 | 0.0590 |
PID-NLADRC | 0.1660 | 0.0449 | 0.0320 | |
PID-PCADRC | 0.1110 | 0.0377 | 0.0212 |
阶段 | 控制策略 | 最大值 | 均值 | 标准差 |
---|---|---|---|---|
空中避障 轨迹段 | 串级PID控制 | 0.4150 | 0.1410 | 0.1200 |
PID-ADRC | 0.1690 | 0.0515 | 0.0356 | |
PID-PCADRC | 0.1420 | 0.0440 | 0.0283 | |
锥形螺旋 轨迹段 | 串级PID控制 | 0.4430 | 0.2050 | 0.1430 |
PID-ADRC | 0.2270 | 0.0945 | 0.5730 | |
PID-PCADRC | 0.1570 | 0.0790 | 0.0408 | |
合段 | 串级PID控制 | 0.4430 | 0.1680 | 0.1340 |
PID-ADRC | 0.2270 | 0.0694 | 0.0505 | |
PID-PCADRC | 0.1570 | 0.0586 | 0.0382 |
Table 4 Statistics of trajectory tracking deviations under wind disturbance conditions
阶段 | 控制策略 | 最大值 | 均值 | 标准差 |
---|---|---|---|---|
空中避障 轨迹段 | 串级PID控制 | 0.4150 | 0.1410 | 0.1200 |
PID-ADRC | 0.1690 | 0.0515 | 0.0356 | |
PID-PCADRC | 0.1420 | 0.0440 | 0.0283 | |
锥形螺旋 轨迹段 | 串级PID控制 | 0.4430 | 0.2050 | 0.1430 |
PID-ADRC | 0.2270 | 0.0945 | 0.5730 | |
PID-PCADRC | 0.1570 | 0.0790 | 0.0408 | |
合段 | 串级PID控制 | 0.4430 | 0.1680 | 0.1340 |
PID-ADRC | 0.2270 | 0.0694 | 0.0505 | |
PID-PCADRC | 0.1570 | 0.0586 | 0.0382 |
[1] |
修杨, 邓宏彬, 危怡然, 等. 基于参数估计的四旋翼无人机自适应鲁棒路径跟随控制器[J]. 兵工学报, 2022, 43(8): 1926-1938.
|
|
|
[2] |
刚桂虎, 赵显. 小型旋翼无人机在未来城市军事行动应用中潜力评估[J]. 国防科技, 2017, 38(2): 33-37.
|
|
|
[3] |
|
[4] |
MOHAMEDO,
|
[5] |
张智轩, 李涛, 伍鹏飞, 等. 改进混沌粒子群算法的四旋翼PID姿态控制[J]. 电光与控制, 2022, 29(3): 16-20.
|
|
|
[6] |
韩京清. 自抗扰控制技术:估计补偿不确定因素的控制技术[M]. 北京: 国防工业出版社, 2008: 183-192.
|
|
|
[7] |
吴义忠, 陈立平. 多领域物理系统的仿真优化方法[M]. 北京: 科学出版社, 2011: 56-58.
|
|
|
[8] |
|
[9] |
刘祚时, 陈飞, 徐燕生, 等. 四旋翼飞行仿真器的PID神经元网络控制器设计[J]. 机械设计与制造, 2023(1): 150-153, 158.
|
|
|
[10] |
王思孝, 赵文军, 张浩, 等. 基于微分跟踪器的共轴反桨无人机串级TD-PID控制算法[J]. 浙江大学学报(工学版), 2021, 55(12): 2359-2364.
|
|
|
[11] |
|
[12] |
肖友刚, 童俊豪. 基于联合观测与前馈补偿的四旋翼无人机自抗扰控制[J]. 应用数学和力学, 2023, 44(3): 229-240.
|
|
|
[13] |
石晓洁, 蔡家斌, 宋建, 等. 风干扰下无人机自抗扰控制参数自整定[J]. 组合机床与自动化加工技术, 2021(6): 67-71.
doi: 10.13462/j.cnki.mmtamt.2021.06.016 |
|
|
[14] |
|
[15] |
刘怡恒, 张和洪, 龙志强, 等. 基于改进跟踪微分器的磁浮列车悬浮控制研究[J]. 机车电传动, 2023(2): 113-122.
|
|
|
[16] |
李宏扬. 跟踪微分器改进算法的应用分析[J]. 吉林大学学报(信息科学版), 2021, 39(1): 45-50.
|
|
|
[17] |
张帆, 徐华中, 向云, 等. 针对含噪信号的自适应跟踪微分器改进研究[J]. 电光与控制, 2017, 24(3): 60-63, 101.
|
|
|
[18] |
|
[19] |
赵志良. 非线性自抗扰控制的收敛性[D]. 合肥: 中国科学技术大学, 2013.
|
|
|
[20] |
万慧, 齐晓慧, 李杰. 基于线性矩阵不等式的线性/非线性切换自抗扰控制系统的稳定性分析[J]. 上海交通大学学报, 2022, 56(11): 1491-1501.
doi: 10.16183/j.cnki.jsjtu.2021.203 |
|
|
[21] |
高志强. 自抗扰控制的传承与发展[J]. 控制理论与应用, 2023, 40: 93-95.
|
|
|
[22] |
葛立明, 李宗刚, 王世伟, 等. 基于调节/观测时间的自抗扰控制器参数整定[J]. 控制与决策, 2017, 32(7): 1333-1337.
|
|
|
[23] |
蔡雨晴. 非线性NLADRC控制及参数整定研究[D]. 北京: 北京化工大学, 2022.
|
|
[1] | CHEN Qi, QIN Guoyang. Trajectory Tracking Control for Hybrid-driven Unmanned Underwater Vehicles with Free-flying and Crawling Dual-mode [J]. Acta Armamentarii, 2024, 45(9): 3216-3229. |
[2] | JIA Yifei, JIANG Chaoyang. Dynamic Reconfigurable Adaptive UGV Formation System [J]. Acta Armamentarii, 2024, 45(10): 3654-3673. |
[3] | LIU Jiangtao, ZHOU Lelai, LI Yibin. Trajectory Tracking and Obstacle Avoidance Control of Six-wheel Independent Drive and Steering Robot in Complex Terrain [J]. Acta Armamentarii, 2024, 45(1): 166-183. |
[4] | LI Caoyan, GUO Zhenchuan, ZHENG Dongdong, WEI Yanling. Multi-robot Cooperative Formation Based on Distributed Model Predictive Control [J]. Acta Armamentarii, 2023, 44(S2): 178-190. |
[5] | XU Peng, ZHAO Jianxin, FAN Wenhui, QIU Tianqi, JIANG Lei, LIANG Zhenjie, LIU Yufei. Specific Complex Locomotion Skills Control for Quadruped Robots [J]. Acta Armamentarii, 2023, 44(S2): 135-145. |
[6] | YANG Jiaxiu, LI Xinkai, ZHANG Hongli, WANG Hao. Robust Tracking of Quadrotor UAVs Based on Integral Reinforcement Learning [J]. Acta Armamentarii, 2023, 44(9): 2802-2813. |
[7] | LU Jiaxing, LIU Haiou, GUAN Haijie, LI Derun, CHEN Huiyan, LIU Longlong. Trajectory Tracking Control of Unmanned Tracked Vehicles Based on Adaptive Dual-Parameter Optimization [J]. Acta Armamentarii, 2023, 44(4): 960-971. |
[8] | PAN Bo, LI Shengfei, WANG Yang, TAN Senqi, ZHANG Naisi, LUO Tian, CUI Xing. Integrated Control Method of Multi-axle Distributed Driving Unmanned Ground Vehicle in Handling Limit [J]. Acta Armamentarii, 2023, 44(11): 3279-3294. |
[9] | TANG Zeyue, LIU Haiou, XUE Mingxuan, CHEN Huiyan, GONG Xiaojie, TAO Junfeng. Trajectory Tracking Control of Dual Independent Electric Drive Unmanned Tracked Vehicle Based on MPC-MFAC [J]. Acta Armamentarii, 2023, 44(1): 129-139. |
[10] | WANG Bao-yuan, SHAO Xiao-jun, LIU Peng-ke, HENG Gang, CHAO Hong-xiao, LIU Jun. Research on Measuring Method of Nutation Angle of Projectile Based on Trajectory Tracking with High Speed Photography [J]. Acta Armamentarii, 2016, 37(7): 1312-1316. |
[11] | DONG Zao-peng, WAN Lei, SUN Yu-shan, LIU Tao, LI Yue-ming, ZHANG Guo-cheng. Trajectory Tracking Control of an Underactuated Unmanned Marine Vehicle Based on Asymmetric Model [J]. Acta Armamentarii, 2016, 37(3): 471-481. |
[12] | LI Zeng-yan, LI Xiao-min, LIU Qiu-sheng. Trajectory Tracking Algorithm for Motion Compensation of Loitering Munition under Wind Environment [J]. Acta Armamentarii, 2016, 37(12): 2377-2384. |
[13] | YANG Yong-tai, RONG Ji-li, LI Jian, LIU Bin, HU Cheng-wei. Dynamic Modeling and Control of Space Manipulator with Flexible Joints and Links [J]. Acta Armamentarii, 2014, 35(7): 1003-1008. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||