Acta Armamentarii ›› 2023, Vol. 44 ›› Issue (12): 3909-3920.doi: 10.12382/bgxb.2023.0735
Special Issue: 爆炸冲击与先进防护
YUAN Mingzheng1, PAN Teng1, BIAN Xiaobing1,2, YANG Lei1, ZHOU Hongyuan4, HUANG Guangyan1,3, ZHANG Hong1,3,*()
Received:
2023-08-09
Online:
2023-12-30
Contact:
ZHANG Hong
CLC Number:
YUAN Mingzheng, PAN Teng, BIAN Xiaobing, YANG Lei, ZHOU Hongyuan, HUANG Guangyan, ZHANG Hong. Response Characteristics of Curved Fiber Composite Protective Shelter under the action of Explosive Shock Wave[J]. Acta Armamentarii, 2023, 44(12): 3909-3920.
Add to citation manager EndNote|Ris|BibTeX
靶板类型 | 面密度/ (kg·m-2) | 质量/ g | 厚度/ mm |
---|---|---|---|
铝合金6061-T6 | 1944 | 4.5 | |
UHMWPE纤维层合板 | 12 | 1940 | 12.5 |
碳纤维层合板 | 1955 | 8.4 |
Table 1 Target plate data table
靶板类型 | 面密度/ (kg·m-2) | 质量/ g | 厚度/ mm |
---|---|---|---|
铝合金6061-T6 | 1944 | 4.5 | |
UHMWPE纤维层合板 | 12 | 1940 | 12.5 |
碳纤维层合板 | 1955 | 8.4 |
R0/(kg·m-3) | E/GPa | v |
---|---|---|
7800 | 206 | 0.30 |
Table 2 Material parameters of target frame and bolt
R0/(kg·m-3) | E/GPa | v |
---|---|---|
7800 | 206 | 0.30 |
参数 | 数值 | 参数 | 数值 | |
---|---|---|---|---|
R0/(kg·m-3) | 2704 | D1 | -0.77 | |
E/GPa | 71 | D2 | 1.45 | |
G/GPa | 26.69 | D3 | -0.47 | |
v | 0.330 | D4 | 0 | |
A/MPa | 256 | D5 | 1.60 | |
B/MPa | 113.8 | C | 5240 | |
C | 0.002 | S1 | 1.40 | |
M | 1.34 | TM/K | 877.6 | |
N | 0.42 | Tr/K | 293.0 |
Table 3 Material parameters of aluminum alloy 6061-T6[15]
参数 | 数值 | 参数 | 数值 | |
---|---|---|---|---|
R0/(kg·m-3) | 2704 | D1 | -0.77 | |
E/GPa | 71 | D2 | 1.45 | |
G/GPa | 26.69 | D3 | -0.47 | |
v | 0.330 | D4 | 0 | |
A/MPa | 256 | D5 | 1.60 | |
B/MPa | 113.8 | C | 5240 | |
C | 0.002 | S1 | 1.40 | |
M | 1.34 | TM/K | 877.6 | |
N | 0.42 | Tr/K | 293.0 |
参数 | 数值 | 参数 | 数值 | |
---|---|---|---|---|
R0/(kg·m-3) | 1006 | K/GPa | 2.20 | |
E1/GPa | 34.3 | SC/GPa | 0.5 | |
E2/GPa | 34.3 | XT/GPa | 1.25 | |
E3/GPa | 3.26 | YT/GPa | 1.25 | |
v12 | 0 | YC/GPa | 1.90 | |
v13 | 0.013 | ALPH | 0.50 | |
v23 | 0.013 | SN/MPa | 900 | |
G12/MPa | 174 | S23/MPa | 900 | |
G23/MPa | 548 | S13/MPa | 900 | |
G13/MPa | 548 |
Table 4 Material parameters of UHMWPE fiber laminates
参数 | 数值 | 参数 | 数值 | |
---|---|---|---|---|
R0/(kg·m-3) | 1006 | K/GPa | 2.20 | |
E1/GPa | 34.3 | SC/GPa | 0.5 | |
E2/GPa | 34.3 | XT/GPa | 1.25 | |
E3/GPa | 3.26 | YT/GPa | 1.25 | |
v12 | 0 | YC/GPa | 1.90 | |
v13 | 0.013 | ALPH | 0.50 | |
v23 | 0.013 | SN/MPa | 900 | |
G12/MPa | 174 | S23/MPa | 900 | |
G23/MPa | 548 | S13/MPa | 900 | |
G13/MPa | 548 |
参数 | 数值 | 参数 | 数值 | |
---|---|---|---|---|
R0/(kg·m-3) | 1500 | S12/MPa | 450 | |
E1/GPa | 231 | S13/MPa | 325 | |
E2/GPa | 231 | S23/MPa | 325 | |
E3/GPa | 10 | XC/GPa | 1.47 | |
v12 | 0.300 | YC/GPa | 1.47 | |
v13 | 0.026 | ZC/GPa | 1.03 | |
v23 | 0.026 | XT/MPa | 2160 | |
G12/GPa | 4.50 | YT/MPa | 2160 | |
G23/GPa | 1.80 | ZT/MPa | 71 | |
G13/GPa | 1.80 |
Table 5 Material parameters of carbon fiber laminates
参数 | 数值 | 参数 | 数值 | |
---|---|---|---|---|
R0/(kg·m-3) | 1500 | S12/MPa | 450 | |
E1/GPa | 231 | S13/MPa | 325 | |
E2/GPa | 231 | S23/MPa | 325 | |
E3/GPa | 10 | XC/GPa | 1.47 | |
v12 | 0.300 | YC/GPa | 1.47 | |
v13 | 0.026 | ZC/GPa | 1.03 | |
v23 | 0.026 | XT/MPa | 2160 | |
G12/GPa | 4.50 | YT/MPa | 2160 | |
G23/GPa | 1.80 | ZT/MPa | 71 | |
G13/GPa | 1.80 |
靶板类型 | 最大位移 | 最终位移 | ||
---|---|---|---|---|
仿真值 | 实验值 | 仿真值 | 实验值 | |
铝板 | 20.5 | 19.2 | 11.4 | 11.2 |
UHMWPE纤维层合板 | 25.5 | 27 | 1.5 | 4.8 |
碳纤维层合板 | 14.2 | 13.2 | -0.3 | 0 |
Table 6 Displacement table of center point of simulated target platemm
靶板类型 | 最大位移 | 最终位移 | ||
---|---|---|---|---|
仿真值 | 实验值 | 仿真值 | 实验值 | |
铝板 | 20.5 | 19.2 | 11.4 | 11.2 |
UHMWPE纤维层合板 | 25.5 | 27 | 1.5 | 4.8 |
碳纤维层合板 | 14.2 | 13.2 | -0.3 | 0 |
材料类型 | TNT 当量/kg | TNT 位置 | 厚度/ mm |
---|---|---|---|
铝合金6061-T6 | 2 | 防爆掩体外侧3m、高0.5m处 | 10 |
UHMWPE纤维层合板 | 27 | ||
碳纤维层合板 | 18 |
Table 7 Simulation conditions of explosion-proof shelters
材料类型 | TNT 当量/kg | TNT 位置 | 厚度/ mm |
---|---|---|---|
铝合金6061-T6 | 2 | 防爆掩体外侧3m、高0.5m处 | 10 |
UHMWPE纤维层合板 | 27 | ||
碳纤维层合板 | 18 |
R0/(kg·m-3) | C4/Pa | C5/Pa | E0/(J·m-3) |
---|---|---|---|
1.23 | 0.400 | 0.400 | 2.50×105 |
Table 8 Air material parameters
R0/(kg·m-3) | C4/Pa | C5/Pa | E0/(J·m-3) |
---|---|---|---|
1.23 | 0.400 | 0.400 | 2.50×105 |
参数 | 数值 | 参数 | 数值 | |
---|---|---|---|---|
R0/(kg·m-3) | 1600 | SC/Pa | 1.55×108 | |
E1/Pa | 1.27×1011 | XC/Pa | 1.47×109 | |
E2/Pa | 8.42×1010 | XT/Pa | 2.20×109 | |
v12 | 0.0205 | YT/Pa | 4.89×107 | |
G12/Pa | 4.21×109 | YC/Pa | 1.99×108 | |
G23/Pa | 4.21×109 | G31/Pa | 4.21×109 |
Table 9 Material parameters of carbon fiber laminates for explosion-proof shelters[24]
参数 | 数值 | 参数 | 数值 | |
---|---|---|---|---|
R0/(kg·m-3) | 1600 | SC/Pa | 1.55×108 | |
E1/Pa | 1.27×1011 | XC/Pa | 1.47×109 | |
E2/Pa | 8.42×1010 | XT/Pa | 2.20×109 | |
v12 | 0.0205 | YT/Pa | 4.89×107 | |
G12/Pa | 4.21×109 | YC/Pa | 1.99×108 | |
G23/Pa | 4.21×109 | G31/Pa | 4.21×109 |
伤害级别 | 超压/MPa | 伤害程度 | 伤害情况 |
---|---|---|---|
1 | <0.02 | 安全 | 安全无伤 |
2 | 0.02~0.03 | 轻伤 | 轻微挫伤 |
3 | 0.03~0.05 | 中等 | 听觉、器官损伤 |
4 | 0.05~0.1 | 严重 | 内脏受到严重挫伤 |
5 | >0.1 | 极严重 | 大部分人死亡 |
Table 10 Harm of peak overpressure to human body
伤害级别 | 超压/MPa | 伤害程度 | 伤害情况 |
---|---|---|---|
1 | <0.02 | 安全 | 安全无伤 |
2 | 0.02~0.03 | 轻伤 | 轻微挫伤 |
3 | 0.03~0.05 | 中等 | 听觉、器官损伤 |
4 | 0.05~0.1 | 严重 | 内脏受到严重挫伤 |
5 | >0.1 | 极严重 | 大部分人死亡 |
[1] |
上观新闻. 美国8000多万枚集束炸弹遗留老挝,未爆弹已致约5万人死亡,中国记者探访未爆弹密集区[N]. 上观新闻, 2023-07-11.
|
|
|
[2] |
任广金. 杀爆弹对典型方舱车辆毁伤效应研究[D]. 沈阳: 沈阳理工大学, 2023.
|
|
|
[3] |
doi: 10.14429/dsj.69.13269 URL |
[4] |
李洪鑫, 欧阳科峰, 左社强, 等. 国外模块化防护技术与设施发展浅析[J]. 防护工程, 2020, 42(6): 67-72.
|
|
|
[5] |
贺才进. 一种轻型防弹防爆复合材料方舱成型工艺研究[J]. 新技术新工艺, 2022(7):15-20.
|
|
|
[6] |
李岳彬, 魏世丞, 盛忠起, 等. 方舱技术发展综述[J]. 机械设计, 2019, 36(4): 5-11.
|
|
|
[7] |
马云玲, 赵丽君, 聂建新. 异型防爆墙抗空气冲击波的数值模拟[J]. 爆破, 2010, 27(1): 26-30.
|
|
|
[8] |
doi: 10.1016/j.compscitech.2023.109930 URL |
[9] |
祁少博. 球面网壳外爆荷载概率模型及失效机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
|
|
|
[10] |
doi: 10.1016/j.tws.2019.106538 URL |
[11] |
doi: 10.1016/j.engstruct.2018.08.105 URL |
[12] |
刘青青, 郭保桥, 石晨, 等. 基于3D-DIC对爆炸作用下碳纤维层合板的变形研究[J]. 高压物理学报, 2019, 33(6):140-147.
|
|
|
[13] |
doi: 10.1016/j.ast.2017.06.028 URL |
[14] |
doi: 10.1016/j.simpat.2021.102330 URL |
[15] |
|
[16] |
doi: 10.1016/j.compstruct.2020.112686 URL |
[17] |
夏清波, 晏麓晖, 冯兴民. UHMWPE纤维层合板抗弹侵彻数值模拟[J]. 四川兵工学报, 2011, 32(2): 119-121, 136.
|
|
|
[18] |
|
[19] |
陈锐林, 李康, 董琪, 等. CFRP加固钢筋混凝土板爆炸冲击作用下动力响应分析的数值模拟[J]. 铁道科学与工程学报, 2020, 17(6): 1517-1527.
|
|
|
[20] |
余海洋, 宣海军, 何泽侃, 等. CFRP层合板爆炸分离损伤模式研究[J]. 机械工程师, 2022(9): 40-44, 47.
|
|
|
[21] |
许明明. 碳纤维增强金属层合板抗高速冲击特性研究[D]. 北京: 北京理工大学, 2018.
|
|
|
[22] |
干年妃, 王多华, 冯亚楠, 等. 聚氨酯泡沫填充的碳纤维增强复合材料锥管吸能性能数值模拟及试验验证[J]. 中国机械工程, 2018, 29(5): 609-615.
|
|
|
[23] |
|
[24] |
doi: 10.1016/j.compositesa.2011.08.004 URL |
[25] |
汪旭光. 爆破设计与施工[M]. 北京: 冶金工业出版社, 2011.
|
|
|
[26] |
年鑫哲, 张耀, 孙传怀, 等. 空气冲击波作用于柔性防爆墙的透射和绕射效应分析[J]. 工程力学, 2015, 32(3): 241-248.
|
|
[1] | ZHAO Xiaoqiang, CHENG Wei. Lightweight Image Super-resolution Reconstruction Based on Cross-fusion of Spatial Features [J]. Acta Armamentarii, 2024, 45(4): 1273-1284. |
[2] | YANG Tuo, XIONG Shihui, WANG Jingcheng, ZHAO Xiangrun, WEN Yuquan. Actuation Noise Prediction and Decoupling of Pyrotechnic Separation Nut [J]. Acta Armamentarii, 2024, 45(3): 763-773. |
[3] | JI Xinbo, LU Weijian, LÜ Chen, WANG Xi, LIAN Zheng, HE Li. Dynamic Deflection Response of Typical Pavement Structure under Different Impact Loads [J]. Acta Armamentarii, 2024, 45(1): 299-311. |
[4] | LIU Jinchun, WANG Yuying, SUN Ni. Numerical Analysis of Gas Explosion Resistance of Two-way Masonry Walls Strengthened by Spraying Polyurea [J]. Acta Armamentarii, 2023, 44(S1): 138-143. |
[5] | WANG Hao, XU Bin, WANG Shu, XU Yongjie, WU Hao. Explosion Impact Protection Performance of Sandwich Structure with Box-shaped Cores [J]. Acta Armamentarii, 2023, 44(12): 3687-3695. |
[6] | CAO Haozhe, LIU Quanpan. Unmanned Swarm Collaborative Visual SLAM Algorithm Based on Semi-direct Method [J]. Acta Armamentarii, 2023, 44(11): 3345-3358. |
[7] | LI Zuoxuan, JIA Liangyue, HAO Jia, WANG Chao, WANG Guoxin, MING Zhenjun, YAN Yan. Lightweight Optimization Design of Unmanned Vehicle Body Structure Based on Multi-working Conditions Correlation [J]. Acta Armamentarii, 2023, 44(11): 3529-3542. |
[8] | ZHAO Wenhui, BAI Shihuan, GAO Dayong, LI Xiaowei, DUAN Zhenyun. Thermal-Mechanical Analysis of the Biaxial Stretch of Aviation Glass [J]. Acta Armamentarii, 2023, 44(10): 3187-3194. |
[9] | CUI Lingfei, GUO Yonghong, XIU Quanfa, SHI Chao, ZHANG Shuoyang. UAV Detection Method Based on Domestic Embedded Intelligent Computing Platform [J]. Acta Armamentarii, 2022, 43(S1): 146-154. |
[10] | YAN Jiwei, SU Juan, LI Yihong. Building Detection Algorithm in SAR Images Based on Ghost Convolution and Attention Mechanisms [J]. Acta Armamentarii, 2022, 43(7): 1667-1675. |
[11] | MA Yuehong, KONG Mengyao. A Lightweight Target Detection Algorithm Based on the Improved Faster-RCNN [J]. Acta Armamentarii, 2021, 42(12): 2664-2674. |
[12] | ZOU Tiangang, YAN Qingdong, GAI Jiangtao, HOU Wei, WANG Zhitao, SHUAI Zhibin, SUN Xueyan. The Scheme of Lightweight Integrated Mixing Transmission Based on Flat Motor for Tracked Vehicle [J]. Acta Armamentarii, 2021, 42(10): 2233-2241. |
[13] | LIANG Jie, REN Jun, LI Lei, QI Hang, ZHOU Hongli. Airport Runway Detection Agorithm Based on Accurate Regression of Typical Geometric Shapes [J]. Acta Armamentarii, 2020, 41(10): 2045-2054. |
[14] | SUN Quan-zhao, YANG Guo-lai, WANG Peng, GE Jian-li, XIE Run. Numerical Research on Rotating Band Engraving Process of a Large-caliber Howitzer [J]. Acta Armamentarii, 2015, 36(2): 206-213. |
[15] | QI Ye, CHANG Qiu-ying, WANG Bin, LI Juan. Research on Tribological Behaviors of Laser Surface Textures under Dry Sliding [J]. Acta Armamentarii, 2015, 36(2): 200-205. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||