[1] Mohammal D A. Super-resolution:a short review, a new method based on hidden Markov modeling of HR image and future challenges[J]. Computer Journal, 2009,52(1):126-141. [2] 邹谋炎. 反卷积和信号复原[M]. 北京:国防工业出版社,2001. ZOU Mou-yan. De-convolution and signal restoration[M]. Beijing: National Defense Industry Press,2001.(in Chinese) [3] 张晶晶,方勇华.基于Contourlet变换的遥感图像去噪新算法[J].光学学报,2008,28(3):462-466. ZHANG Jing-jing, FANG Yong-hua. Novel denoising method for remote sensing image based on contourlet transform[J]. Acta Optica Sinica, 2008,28(3):462-466. (in Chinese) [4] 刘扬阳, 金伟其, 苏秉华,等. 基于超分辨力图像复原算法的模糊系统辨识[J].光电子·激光, 2005 , 16(2) : 213-216. LIU Yang-yang , JIN Wei-qi , SU Bing-hua,et al. Identification of blurred system based on super-resolution reconstructing image schemes [J] . Journal of Optoelectronics Laser, 2005, 16(3) : 213-216. (in Chinese) [5] 孟静,王加俊,黄贤武,等.一种光学层析图像的多准则重建方法[J].光学学报,2006, 26(9):1340-1344. MENG Jing,WANG Jia-jun,HUANG Xian-wu, et al. Multi-criterion reconstruction method for optical tomography[J]. Acta Optica Sinica, 2006,26(9):1340-1344. (in Chinese) [6] Shao W Z, Wei Z H. Edge-and-corner preserving regularization for image interpolation and reconstruction [J]. Image and Vision Computing, 2008,26:1591-1606. [7] 王怀野, 张科, 李言俊. 各向异性滤波在红外图像处理中的应用[J]. 红外与毫米波学报, 2005, 24(2):109-112. WANG Huai-ye, ZHANG Ke, LI Yan-jun. Anisotropic Gaussian filtering for infrared image [J]. Journal of Infrared And Millimeter Waves,2005, 24(2) : 109-112. (in Chinese) [8] 洪汉玉, 张天序, 余国亮. 航天湍流降质图像的极大似然估计规整化复原算法[J]. 红外与毫米波学报, 2005, 24(2) : 130-134. HONG Han-yu,ZHANG Tian-xu, YU Guo-liang. Regularized restoration algorithm of astronautically turbulence degraded images using maximum-likehood estimation [J].Journal of Infrared and Millimeter Waves, 2005, 24(2) : 130-134.(in Chinese) [9] Rudin L,Osher S,Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica D, 1992,60(1-4):259-268. [10] Marquina A,Osher S J. Image super-resolution by TV-regularization and Bregman iteration[J]. Journal of Scientific Computing,2008,37: 367-382. [11] Chambolle A. An algorithm for total variation minimization and application[J]. Journal of Mathematical Imaging Vision, 2004,20(1):89-97. [12] Chen K,Tai X C. A nonlinear multigrid method for total variation minimization from image restoration [J]. Journal of Scientific Computing, 2007,33(2):115-138. [13] Huang Y M,Micheal K NG, Wen Y W. A fast total variation minimization method for image restoration[J]. Muti-scale Model Simulation,2008,7(2):774-795. [14] Wang Y,Yang J,Yin W,et al. A new alternating minimization algorithm for total variation image reconstruction[J]. SIAM Journal on Imaging Sciences, 2008, 1(3):248-272. [15] Shen J H. On the foundations of vision modeling, I. Weber’s law and Weberized TV restoration[J]. Physica D:Nonlinear Phenomena,2003,175(3-4):241-251. [16] Black M,Sapiro G. Edge as outiers: anisotropic smoothing using local image statistics[C]∥Proceedings of the Scale-space Conference. Berlin:Springer-Verlag,1999:259-270. [17] Wang Z,Bovik A C,Sheikh H R,et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transaction on Image Processing, 2004,13(4): 600-612. [18] Afonso M V,Bioucas-Dias J M,Figueiredo M A T. Fast image recovery using variable splitting and constrained optimization[J]. IEEE Transaction on Image Processing, 2010,19(9):2345-2356. |